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Introduction

We build too many walls and not enough bridges.
Isaac Newton

Nature has devised many di�erent ways of creating �uid �ow, most of them for
animal propulsion, that is, for �ying or swimming. At larger scales, examples are
the �apping wings of birds, and the waving tails of �shes. Flapping wings are also
found at smaller scales in insects. At really small scales, typically for sub-mm sizes,
a �uid manipulation mechanism used by nature is that by cilia or �agella.

In a way we all owe our existence to the beating of cilia and �agella, since not only
the swimming of sperm but also the transport of the fertilised egg to the uterus is a
result of the activity of these organelles. Cilia and �agella are actively bending hair-
like appendages that act as sensing and motility generating organelles of eukaryotic
cells. Their evolutionary highly conserved [1] working mechanism as well as their
widespread occurrence in a great variety of systems demonstrate the power and
importance of physical interactions as a means of achieving biological function.

A prominent example of the many di�erent circumstances, where the ability of
cilia and �agella to generate regular beat patterns plays a vital role to create motion
on a cellular level, is the propulsion of single cells such as the swimming of protozoa
and spermatozoa. Fig.1 gives an idea of how many other di�erent micro-organisms
make use of ciliary propulsion or �uid manipulation.

Also the transport of �uid along a stationary layer of cells as for example in
the trachea and oviduct is achieved through the beating of cilia covering epithelial
cells. Another most striking display of the importance of ciliary beats is the recently
discovered vortical motion of nodal cilia that leads to an external �uid �ow during
embryological development [2]. This �ow has been shown to be responsible for the
establishment of the left-right axis across many vertebrate species [3], a spectacular
�nding which has answered a long standing medical puzzle: why approximately
half of the people whose cilia are immotile due to a genetic defect (primary ciliary
dyskinesia [2]) exhibit an inversion of the usual left-right asymmetry of their internal
organs (situs inversus).

In this work, we focus on the ciliary kinematics, with particular attention at
array of a certain number of cilia in di�erent geometric con�guration. This problem
is strictly related, for instance, in the case of a spheric surface covered by cilia,
to the propulsion of microswimmers as Paramecium (Fig. 2), for which two levels
of symmetry-breaking and two types of waves are observed. [4] At the level of
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an individual cilium, a deformation wave propagates along the cilium length as for
�agellar motion.

The beating pattern is however di�erent from that of individual �agella, and the
individual stroke of a cilium can be decomposed into two parts: an e�ective stroke,
during which the cilium is extended and o�ers the most resistance to the �uid, and
a recovery stroke, in which the cilium is bent in such a way as to reduce the viscous
drag. In addition to such asymmetric beating at the level of an individual cilium, the
beating coordination of neighboring cilia at the organism level results in a collective
behavior known as metachronal waves.

All cilia on the surface of a microorganism perform similar beating patterns, but
they deform in time with a small phase di�erence with respect to their neighbors,
and these phase di�erences are spatially distributed in a way that leads to symmetry-
breaking at the level of the whole cell and the formation of a wave pattern of surface
deformation [4, 5] (see Fig.3). The origin of the synchronization responsible for the
metachronal waves in ciliary propulsion is still debated, but several recent studies
have suggested that it results from hydrodynamic interactions between neighboring
cilia. [6].

Even more debated, and not yet investigated, is the possibility that the metachronal
waves are the most e�cient solution for the propulsion of the surrounding �uid , i.e.,
given the kinematics of the cilia, the metachronal waves allow the force exerted by
means of their motion to the �uid (and so to the object they are attached to) to
have the strongest possible value. This point is controversial because is not at all
sure that the energy balance of a cell or microorganism is mostly dominated by the
propulsion and mechanic contribute, instead, for instance, by the feeding or chemical
ones.

In this thesis, we consider the physical background on which the mechanics of
cilia and �agella can be extensively studied, starting from a brief review of the basic
concepts of Fluid mechanics in the �rst chapter, passing through the Creeping �ow
approximation, necessary because of the scale at issue in our case, in the second
chapter. The third chapter is devoted to an overview of the typical techinques in
the study of hydrodynamic interactions between particles. The last two chapter
represent the core of this work, giving for the �rst time a systematic description of
the di�erent modeling approaches proposed in the past to address the problem of cilia
dynamics, and �nally presenting our original contribute. We focused our attention
on the optimal kinematics of an array of cilia, proposing and developing an orignal
approach to study two cases: near a spherical rigid surface and near a plane wall. In
this systems, we ask the fundamental question of why metachronal waves arise, and
if this can be related to an optimal force exerted on the �uid.
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Figure 1: Ciliated micro-organisms, living in lakes and rivers. The bar on the right
indicates the scale (1 mm). B.J Finlay et G.F. Esteban : The Ciliate Diversity Chart.
Drawing, Institute of Freshwater Ecology, Windermere Laboratory, UK.

Figure 2: Di�erent species of Paramecium, edited from [16]
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Figure 3: Cilia and �agella at work in di�erent circumstances. In the respiratory
tract the concerted action of beating cilia transports mucus up the trachea (wind
pipe) which works as an important cleaning and defence mechanism, sometimes
instructively called �mucociliary escalator�.



Notation

v Bold type signi�es vector character.

ei , i = 1, 2, 3 Canonical base of R3

A Underline bold type indicates a second order tensor, such that: A :
R3 × R3 → R. A = Aijei ⊗ ej

A Double underline bold type indicates a third order tensor, such that:
A : R3 × R3 × R3 → R. A = Bijkei ⊗ ej ⊗ ek

A · b, a · b Inner and scalar product Aijbj or aibi

a× b Edge vector product εijkajbk where εijk = +1 if (i, j, k) even permutation
of (1, 2, 3), εijk = 0 if at least two of the three index are equal, εijk = −1
otherwise.

AB Tensor product A⊗B = AijBlm

x = (x, y, z) Position vectors; |x| = r

v = (vx, vy, vz) ≡ v(x, t) Velocity at a speci�ed time and position in space; |v| = v

σ, e Stress and deformation tensors

p, ρ, µ, ν = µ
ρ
pressure, density, kinematic and dynamic viscosity

∂x ≡ ∂
∂x

Partial di�erentiation respect to the variable x

∇ ≡ (∂x, ∂y, ∂z) Gradient vector

∇2 ≡ ∂2x + ∂2y + ∂2z Laplacian operator

Dt = ∂t + v · ∇ operator giving the material derivative, or rate of change at a point
moving with the �uid locally; applies only to functions of x and t
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Chapter 1

Basic concepts

I am rooted, but I �ow.
Virginia Woolf

It is assumed that the reader is familiar with the basic principles and equations
that describe the Fluid dynamics processes from a continuum mechanics point of
view. Nevertheless, we begin our discussion with a review of these principles and the
governing equations, following some classical book treatment [9, 10, 11, 12, 13].

1.1 The continuum approximation

One possible approach to the description of a �uid in motion at small scales is to
examine what occurs at the microscopic level where the stochastic motions of indi-
vidual molecules can be distinguished. However, the resulting many-body problem
of molecular dynamics is impossibly complex under normal circumstances because
the �uid domain contains an enormous number of molecules. Thus e�orts to provide
a mathematical description of �uids in motion could not have succeeded without the
introduction of sweeping approximations. The most important among these is the
so-called continuum hypothesis. According to this hypothesis, the �uid is modeled
as in�nitely divisible without change of character. This implies that all quantities,
including the material properties such as density, viscosity, or thermal conductiv-
ity, as well as variables such as pressure, velocity, and temperature, can be de�ned
at a mathematical point in an unambiguous way as the limit of the mean of the
appropriate quantity over the (inevitable) molecular �uctuations.

The desired description of �uid motion is then at this larger, macroscopic level
where, for example, an average of the forces of interaction between the �uid and
the bounding surface may be needed, but not the instantaneous forces of interaction
between this surface and individual molecules of the �uid. Once the continuum hy-
pothesis has been adopted, the usual macroscopic laws of classical continuum physics
are invoked to provide a mathematical description of �uid motion, namely, conserva-
tion of mass, conservation of linear and angular momentum (the basic principles of
Newtonian mechanics), and conservation of energy (the �rst law of thermodynamics).

In adopting the continuum hypothesis, we assume that it is possible to develop a
description of �uid motion on a much coarser scale of resolution than on the molecular

11
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scale that is still physically equivalent to the molecular description in the sense that
the former could be derived, in principle, from the latter by an appropriate averaging
process. Thus it must be possible to de�ne any dependent macroscopic variable as an
average of a corresponding molecular variable. A convenient average for this purpose
is suggested by the utility of having macroscopic variables that are readily accessible
to experimental observation. Now, from an experimentalist's point of view, any
probe to measure velocity, say, whose dimensions were much larger than molecular,
would automatically measure a spatial average of the molecular velocities. At the
same time, if the probe were su�ciently small compared with the dimensions of the
�ow domain, we would say that the velocity was measured �at a point,� in spite of
the fact that the measured quantity was an average value from the molecular point
of view. This simple example suggests a convenient de�nition of the macroscopic
variables in terms of molecular variables, namely as volume averages, for example,

v ≡ 〈u〉 ≡ 1

V

ˆ
V

vdV (1.1)

where V is the averaging volume.

If 〈w〉 is to represent a statistically signi�cant average, the typical linear dimen-
sion of the averaging volume V 1/3 must be large compared with the scale δ that is
typical of the microstructure of the �uid. Most frequently δ represents a molecu-
lar length scale. If at the same time 〈w〉 is to provide a meaningful point variable
in the macroscopic description, it must have a unique value at each point in space
at any particular instant, and this implies that the linear dimension V 1/3 must be
arbitrarily small compared with the macroscopic scale L that is characteristic of spa-
tial gradients in the averaged variables (frequently this scale will be determined by
the size of the �ow domain). Thus, with macroscopic variables de�ned as volume
averages of corresponding microscopic variables, the existence of an equivalent con-
tinuum description of �uid motions or heat transfer processes (that is, the validity
of the continuum hypothesis) requires

δ � V 1/3 � L (1.2)

In other words, it must be possible to choose an averaging volume that is arbi-
trarily small compared with the macroscale L while still remaining very much larger
than the microscale δ.

One consequence of the continuum approximation is the necessity to hypothesize
two independent mechanisms for heat or momentum transfer: one associated with
the transport of heat or momentum by means of the continuum or macroscopic
velocity �eld v, and the other described as a �molecular� mechanism for heat or
momentum transfer that will appear as a surface contribution to the macroscopic
momentum and energy conservation equations. This split into two independent
transport mechanisms is a direct consequence of the coarse resolution that is inherent
in the continuum description of the �uid system.

Obviously, the sum of the convective and molecular �ux contributions in the
continuum description must be identical to the total �ux of heat due to molecular
motions if the continuum description of the system is to have any value.
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1.2 Governing equations

We indicate with v(x, t) the Eulerian velocity, evaluated instantaneously at time t
and at the point x �xed with respect to the laboratory.

In the continuum approximation, any scalar quantity B associated with a �xed
material point and the partial derivatives of B with respect to time and spatial
position in a �xed (inertial) reference frame, changes for a moving material point
both because B may vary with respect to time at each �xed point at a rate ∂B/∂t
and because the material point moves through space and B may be a function of
spatial position in the direction of motion. The rate of change of B with respect to
spatial position is just ∇B. The rate at which B changes with time for a material
point with velocity v is then just the projection of ∇B onto the direction of motion
multiplied by the speed, which is v·∇B. It follows that the convected time derivative
of any scalar B can be expressed in terms of the partial derivatives of B with respect
to time and spatial position, in this Eulerian (also called material picture), with the
material derivative notation:

DtB ≡ ∂tB + v · ∇B

Morover, the Reynolds transport theorem states

Dt

ˆ
Vm(t)

B(x, t) dV =

ˆ
Vm(t)

(∂tB + v · ∇B) dV (1.3)

This is essentially a generalization of Leibnitz rule for di�erentiation of a one-
dimensional integral with respect to some variable when both the integrand and the
limits of integration depend on that variable. And this relation can be used to impose
the total mass, momentum, energy conservation laws.

1.2.1 Continua equations

Starting from the assumption that the mass is conserved along the particles' paths,
and using the (1.3), the so-called equation of continuity can be enstablished for a
generic continuum:

∂tρ+∇ · (ρv) = 0 (1.4)

where ρ(x, t) is the �uid density.
From the Newton's second Law, stating the balance between the variation of

total momentum
´
V
ρv and the external body and stress forces, we can derive the

fundamental equation:
ρDtv = ρf +∇ · σ (1.5)

where σ is the stress tensor of the continuum, taking into account the surface forces
on each material particle, and f the external body force per unit mass. From the
Energy Balance, an analagous relation can be derived:

Dt

(
1

2
ρv2 + ρE

)
= ρv · f +∇ · (σ · v) +∇ · q (1.6)

where E is the internal energy per unit mass, and q is the heat �ux.
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If the continuum is nonpolar, such that the torques within it arise only as the
moments of direct forces, the conservation of the angular momentum implies the
symmetry of the stress tensor. The equations (1.6)(1.5)(1.4) describe the dynamics
of a generic continuum.

1.2.2 Navier-Stokes equations

To write down the equations in the case of a �uid �ow, we must have a model
for the relation between the stress and the state of the �uid. Let us consider an
incompressible �uid, for which the continuity equation (1.4) states that ∇ · v = 0.
In practice we shall restrict to �uids with uniform density, that is a more restrictive
assumption than the incompressibility. The conditions under which a �uid can be
considered as incompressible can in most cases be described by the inequality U � c
where U represents a characteristic velocity for the �ow and c is the speed of pressure
waves in the given �uid (for example, the speed of sound) [13].

Naturally, we would expect this relation to vary from one material to another. If
any element of area experiences a stress normal to itself and this stress is independent
of the orientation, the stress is called hydrostatic. All the �uid at rest exhibit this
stress behaviour. It implies that the stress tensor can be write as σij = −pδij for a
state of hydrostatic stress.

Now we consider deformation. The intuitive distinction between a solid and a
�uid is that the stress in solids depends on the amount of deformation, while in �uid
is that the stress in solids depends on the amount of deformation, while in �uids it
depende on the rate of deformation. The istantaneous rate of deformation of a small
material �lament is characterized by the rate of strain tensor

eij =
1

2
(∂ivj + ∂jvi)−

1

3
(∇ · v)δij

The simplest theory for a �uid is based on the hypothesis that the stress is linear
with respect to e, so that

σij = −pδij + 2µeij

and this equation is known as the Newtonian constitutive equation. Real �uids
satisfying this relation to the limits of the purpose at hand are called Newtonian
�uids. The material property µ is called the dynamic viscosity. The factor two is
due to historical reasons. Combining this constitutive relation with the momentum
equation leads to the Navier-Stokes equations for an incompressible Newtonian �uid:

ρ(∂tv + v · ∇v) = −∇p+ µ∇2v + ρf
∇ · v = 0

(1.7)

where rigorously v : D × R → D ⊂ R3 is a function usually taken di�erentiable
at least three times.

Requiring that on the surface of any solid obstacle in the domain of the �ow there
is no slip, we must also have:

v
∣∣
∂D

= 0
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1.2.3 Energy balance for a Newtonian Perfect incompressible

�uid

In the case of an incompressible perfect �uid, without heat transfer, equation (1.6)
can be written in the form:

Dt

(
1

2
ρv2
)

= ρv · f −∇p · v + 2µ(∇ · e) · v − 2µe : ∇v (1.8)

and can be integrated by use of the divergence theoreom to obtain:

ˆ
V

Dt

(
1

2
ρv2
)
dV =

ˆ
V

ρv·f dV −
ˆ
∂V

pv·n dS+2µ

ˆ
∂V

(e·n)·v dS−2µ

ˆ
V

eij∂ivj dV

� The �rst term corresponds to the increase in energy resulting from external
forces. This term is positive when ρf and v are in the same direction, as would
be the case for a �uid �owing downwards within the Earth's gravitational �eld
(f = g), leading to an increase in the kinetic energy;

� The second and third terms give, respectively, the work done by the pressure
forces and by the components of the viscous stresses which act normal to the
surface ∂V ;

These �rst four terms represent, then, the complete set of possible changes
in the energy due to convective e�ects resulting from the work done by the
forces exerted on the surface ∂V , or from an external force �eld. (In this last
case, if the �eld is conservative, we have an exchange of kinetic and potential
energy).

� Finally, the last term represents the irreversible transformation of kinetic en-
ergy, by viscous dissipation, into internal energy of the �uid in the form of
heat. This can be made explicit, using the simmetry of eij = ∂ivj + ∂jvi:

2eij∂ivj =
1

2
(∂jvi + ∂ivj)(∂jvi + ∂ivj) = 2||e||

Therefore, the rate of kinetic energy dissipation through viscous mechanism is:

ε := (DtEc)visc = 2µ

ˆ
V

||e|| dV =
µ

2

ˆ
V

(∂jvi + ∂ivj)(∂jvi + ∂ivj) dV

1.3 Scaling and dimensional analysis

The equations of �uid motion presented in the preceding section are, in general,
di�cult to solve. They comprise a nonlinear system of partial di�erential equations,
and in many situations it is not yet possible even to rigorously prove that solutions
exist.

At least in part because of these di�culties, until only very recently much of the
practical work in �uid dynamics required laboratory experiments. Clearly, in any
of these cases it could be prohibitively expensive to build a succession of full-scale
models (often termed �prototypes�) for testing and subsequent modi�cation until a
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proper con�guration was found. Under what circumstances will the �ow �eld about a
scale model be the same as that about the actual full-size object? It is this question,
that will be addressed in the present section, following the reasoning of McDonough
[8], and showing that the basic answer is: geometric and dynamic similarity must be
maintained between scale model and prototype if data obtained from a model are to
be applicable to the full-size object.

The requirement of geometric similarity can be expressed as following: two ob-
jects are said to be geometrically similar if all linear length scales of one object are
a �xed ratio of all corresponding length scales of the second object. Here, �linear�
length scale simply means any length that can be associated with a straight line
extending from a chosen coordinate origin to an appropriate part of the object being
considered. The de�nition immediately implies that the two objects are of the same
general shape, for otherwise there could be no �corresponding� linear length scales.

A more complex concept is that of Dinamic similarity: two geometrically similar
objects are said to be dynamically similar if the forces acting at corresponding loca-
tions on the two objects are everywhere in the same ratio. The speci�c requirements
of the above de�nition are not easily checked, and we will subsequently demonstrate
that all that is actually needed is equality of all dimensionless parameters associated
with the �ow in, or around, the two objects.

There are two ways by means of which we can determine the dimensionless param-
eters, and thus requirements for dynamic similarity, in any given physical situation.
In cases for which governing equations are known, straightforward scaling of these
equations will lead to the requirements needed to satisfy the above de�nition. On
the other hand, when the governing equations are not known, the standard pro-
cedure is to employ the Buckingham theorem. In the case of �uid dynamics the
governing equations are known - they are the Navier�Stokes equations derived in
preceding sections. Thus, we would expect to usually make direct application of
scaling procedures.

1.3.1 Scaling of the Navier-Stokes equations

From the de�nition of dynamic similarity we see that it is the ratios of forces at
various corresponding locations in two (or more) �ow �elds that are of interest. Now
if one could somehow arrange the equations of motion (via scaling) so that their
solutions would be the same in each of the �ow �elds of interest, then obviously the
ratios of forces would be the same everywhere in the two �ow �elds�trivially.

In light of this, the goal should be to attempt to cast the Navier�Stokes equations
in a form that would yield exactly the same solution for two geometrically similar
objects, via scaling. Then, although the �unscaled� solutions would be di�erent (as
would be their solutions), they would di�er in a systematic way related to geometric
similarity of the objects under consideration. It is important to note that the form
of the N.S. equations given in (1.7) does not possess this property because we could
change either ρ or ν (or both) in these equations thus producing di�erent coe�cients
on pressure and viscous force terms, and the equations would have di�erent solutions
for the two �ow �elds, even for �ows about geometrically similar objects.

The method we usually employed to achieve the desired form of the equations
of motion is called scaling, or sometimes dimensional analysis. The goal of such an
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analysis is to identify the set of dimensionless parameters associated with a given
physical situation (in the present case, �uid �ow represented by the N.S. equations)
which completely characterizes behavior of the system (i.e., solutions to the equa-
tions). The �rst step in this process is identi�cation of independent and dependent
variables, and parameters, that fully describe the system. Once this has been done,
we introduce �typical values� of independent and dependent variables in such a way
as to render the system dimensionless. Then, usually after some rearrangement of the
equations, the dimensionless parameters that characterize solutions will be evident,
and it is these that must be matched between �ows about two geometrically similar
objects to guarantee dynamic similarity. In our case the independent variables of the
system are x = (x, y, z) and t, the dependent variables v = (u, v, z) and p, and the
parameters ρ and ν, if we take f = 0. In general, the boundary and initial conditions
associated with (1.7) don't introduce new independent or dependent variables, and
usually don't lead to additional parameters. Thus, in the present analysis we will
not consider these. Introducing the typical scale for the values of independent and
dependent variables, we make the scaling:

x′ = x/L , t′ = t/T , v′ = v/U , p′ = pL/(µU)

and substituting in the equations:

L

UT
∂tv + v · ∇v =

ν

UL

(
−∇p+∇2v

)
, ∇ · v = 0 (1.9)

The �nal quantities in (1.9) with which we must deal are UL/ν and TU/L. The
�rst dimensionless group, is probably the single most important parameter in all
of �uid dynamics. It is called the Reynolds number after Osbourne Reynolds who
identi�ed it as a key parameter in his early studies of transition to turbulence. In
general we express the Reynolds number as

Re =
UL

ν
=
ULρ

µ
(1.10)

where U and L are, respectively, velocity and length scales; ν, as usual, denotes
kinematic viscosity. It is interesting to note that this single dimensionless parameter
contains two �uid property parameters, ρ and µ , a characteristic �ow speed, and a
characteristic geometric parameter, the length scale. Since time and pressure scales
can be readily derived from these, it is seen that this single parameter completely
characterizes many �uid �ows.

The second dimensionless group, is only relevant when the problem is not sta-
tionary, and is the so-called Strouhal number

S =
TU

L

Equations (1.9) are dimensionless, and their solutions now depend only on the
parameter Re. In particular, if �ow �elds associated with two geometrically similar
objects have the same Reynolds number, then they have the same scaled velocity



18 CHAPTER 1. BASIC CONCEPTS

and pressure �elds. In turn, it is easily seen from the equations of motion that this
implies that they will exhibit the same scaled forces at all locations in the �ow.
Then, in light of geometric similarity, the unscaled forces will be in a constant ratio
at all corresponding points of the two �ow �elds, and dynamic similarity will have
been achieved. Hence, for �ows in, or around, geometrically similar objects, dynamic
similarity is achieved if all dimensionless parameters associated with these �ows are
the same.

1.4 The Reynolds number

As we saw in the former section, the Reynolds number is a dimensionless quantity
which qualitatively captures the characteristics of the �ow regime, and it has several
di�erent physical interpretations. Let us consider the �ow around an obstacle, or a
moving body [15]. It is classically de�ned as the ratio of the typical inertial terms in
the Navier-Stokes equation, to the viscous forces per unit volume.

Re ∼ |v · ∇v|
|ν∇2v|

(steady) , Re ∼ |∂tv|
|ν∇2v|

A low Reynolds number �ow is one for which viscous forces dominate in the �uid.

A second interpretation can be given as the ratio of time scales. The typical time
scale for a local velocity perturbation to be transported convectively by the �ow
along the body is tadv ∼ L/U , whereas the typical time scale for this perturbation to
di�use away from the body due to viscosity is tdiff ∼ ρL2/µ. We see therefore that

Re =
ρL2/µ

L/U
∼ tdiff

tadv

and a low Reynolds number �ow is one for which �uid transport is dominated by
viscous di�usion.

We can also interpret Re as a ratio of forces on the body. A typical viscous stress
on a blu� body is given by σvisc ∼ µU/L, leading to a typical viscous force on the
body of the form fvisc ∼ µUL. A typical inertial stress is given by a Bernoulli-like
dynamic pressure, σin ∼ ρU2, leading to an inertial force fin ∼ ρU2L2 . We see that
the Reynolds number is given by

Re =
ρU2L2

µUL
∼ fin
fvisc

and therefore in a low Reynolds number �ow the forces come primarily from viscous
drag.

A fourth interpretation, more subtle, was o�ered by Purcell [14]. He noted that,
for a given �uid, F = µ2/ρ has units of force, and that any body acted upon by the
force F will experience a Reynolds number of unity, independent of its size. Indeed,
it is easy to see that

Re =
µUL

µ2/ρ
∼ fvisc
F

and Re = (fin/F)1/2, and therefore a body with a Reynolds number of one will have
fin = fvisc = F . A body moving at low Reynolds number therefore experiences
forces smaller than F , where F ∼ 1 nN for water.



Chapter 2

Creeping Flow

You can't trust water: Even a straight stick turns crooked in it.
William Claude Fields

It was shown in the previous chapter that non-dimensionalization reveals the di-
mensionless combination(s) of independent parameters that control the form of the
solution of the set of equations that describes the motion of a �uid. In general, for
isothermal �ow of an incompressible, Newtonian �uid in a domain with solid, �xed
boundaries, we saw that there is a single dimensionless group, called the Reynolds
number, that determines the form of solutions to the Navier�Stokes and continu-
ity equations. When this parameter is very small, the (linear) viscous terms in the
equation are dominant over the (nonlinear) inertial or acceleration terms, and a lin-
ear approximation of the equations is thus possible in the asymptotic limit as the
Reynolds number approaches zero. The class of �uid motions where this approxi-
mation can be used is known as creeping �ow, and this chapter focuses on general
analysis of motion of this type.

Since the Reynolds number Re = UL/ν is obtained by the combination of three,
quite disparate, physical quantities, �ow at low Reynolds numbers can be observed
in a wide variety of physical phenomena.

� The motion of microscopic objects (here the low value of Re is associated with
a small L), as the movement of bacteria (with typical sizes in the range of a few
microns). Typically, in water (ν ∼ 10−6 m2/s ), for bacteria of approximate
length 3µm, moving at a velocity of 10µ/s, we �nd that Re ∼ 3 · 10−5. For
such motion, the role of inertia is totally negligible: when a bacterium stops its
propulsion, the velocity decreases to zero in a time of the order of microseconds.
Another microscopic domain is the dynamics of suspensions of small-diameter
particles.

� Also low-velocity motion of geological features (here, the huge linear dimensions
of the �ow are more than compensated by the small value of the ratio U/ν).
Two examples can be cited: the motion of glaciers and the motion of the Earth's
mantle.

19
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� Finally, the �ow of highly viscous �uids, such as petroleum tars, alimentary
pasta, plastics, or honey. A number of heavy crude oils have, at ordinary
temperatures, viscosities more than a million times greater than that of water.

2.1 The Stokes equations

In every case that we have just listed, the �uid can be considered to be incompressible.
In fact, the velocity of the �uid remains very small relative to the velocity of sound,
and we can therefore make use of the Navier-Stokes equations, which are applicable
to incompressible Newtonian �uids:

∂tv + v · ∇v = −∇(p− p0)
ρ

+ ν∇2v ,∇ · v = 0 , ∇p0 = ρf

where we assumed a potential force �eld. In their non-dimensionalized form they
can be written:

Re

(
∂tv

S
+ v · ∇v

)
= −∇p+∇2v , ∇ · v = 0 (2.1)

As we saw in the last section of the former chapter, the fundamental assumption, in
the discussion of �ow at low Reynolds numbers, is that the magnitude of the terms
v ·∇v, corresponding to inertial forces, is small relative to that of the viscous friction
per unit volume ν∇2v.

Actually, in the most general case, when the motion is non-steady, the relative
magnitude of the the Eulerian acceleration is determined by the ratio of the Reynolds
number to the Strouhal number, Re/S (note that for steady �ows the characteristic
time T = L/U and S = 1). In particular, inertia terms become small compared with
viscous and pressure-gradient terme as the Reynolds number becomes small:

Re� 1 or Re/S � 1. (2.2)

Thus, under this combination of assumptions, the Navier-Stokes equation reduces to

∇p = µ∇2v , ∇ · v = 0 (2.3)

where for the general case we substituted p → p − p0 to take into account the
volume forces. These equations are known as the creeping-�ow or Stokes equations.
The most important feature of the (2.3) is that they are linear and thus can be solved
by a number of well-known methods for linear di�erential equations. Morover, as we
see, the double limit (2.2) implies that the time derivative in the equations of motion
is also neglected. For this reason, creeping �ows are sometimes called quasi-steady .
Thus time appears in a creeping-�ow solution only as a parameter that characterizes
the instantaneous boundary velocity, or boundary geometry, either of which may
depend on time.
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Other forms of the Stokes equations

Recalling the de�nition of the stress tensor σij = −pδij + 2µeij, and that 2∇ · eij =
∇2v, we can write the �rst of the Stokes equations:

∇ · σ = 0

Low-Reynolds-number �ow can also be described (just like any other �ow) in
terms of the vorticity vector ω = ∇ × v instead of the velocity itself. Therefore,
using the incompessibility condition, we obtain also the form:

∇p = −µ∇× ω =⇒ ∇2p = 0 (2.4)

At last, taking the curl of (2.4) :

∇2ω = 0 (2.5)

This last equation is a speci�c form of the equation of evolution of vorticity for
stationary �ow at low Reynolds number. The transport of vorticity by viscous di�u-
sion is then represented there by the term µ∇2ω. Thus, a physical interpretation the
Stokes equation is that, in stationary �ow at low Reynolds number, the velocity gra-
dients reach an equilibrium state: no transport of vorticity occurs within stationary
�ow of such a type.

In the speci�c case of two-dimensional or axisymmetric �ows, we know from the
classical mathematical theory of �uid mechanics that we can represent the velocity
�eld in terms of a streamfunction, such that:

v = ∇× n̂ψ , n̂ ⊥ plane of the motion (2D) or azimuthal (axisymmetric)

and thus taking the divergence of the Stokes equation we obtain, in Cartesian
coordinate, the classical biharmonic equation:

∇ · ∇2v = ∇ · ∇2∇× ψn̂ =
∇2p

µ
=⇒ ∇4ψ = 0

or in spherical coordinates, the equation [9]:[
∂2

∂r2
+

sin θ

r2
∂

∂θ

(
1

sin θ

∂

∂θ

)]2
ψ = 0

2.2 Properties of solutions of the Stokes equations

2.2.1 Uniqueness

For a given �ow geometry, and speci�c boundary conditions (both at in�nity and
at all solid walls), the Stokes equation has a unique solution. This crucial property
follows from the linearity of the equation. In contrast, for the �ow of real �uids
at su�ciently large Reynolds numbers, there exists a multiplicity of non-stationary
solutions of the Navier-Stokes equation, resulting from the non-linear convective
terms, and the presence of vorticity. For a proof see [13, 10].
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2.2.2 Reversibility

Reversibility is also a direct result of the linearity of the Stokes equation. Indeed, if we
assume that we know a velocity �eld v(x, y, z) which is solution of the equation, with
a corresponding pressure �eld p(x, y, z),−v(x, y, z) will also be a solution provided
only that we reverse the sign of the pressure gradients, as well as that of the velocities,
at every solid boundary. Equation (2.3) is then again satis�ed, since its two terms are
replaced by their negatives and the boundary conditions are appropriately changed.
As a consequence of the reversibility of the solutions, when an object has a plane
of symmetry, and the �ow velocity far away is normal to this plane, x = 0, the
streamlines upstream and downstream of the object are symmetrical.

This result is a very sensitive test for small values of the Reynolds number.
For the case of the �ow around a cylinder, as soon as Re becomes of order unity,
recirculation zones appear on the down- stream face of the obstacle. For rapid �ow,
a large turbulent wake is observed downstream, while, upstream, the streamlines
remain perfectly stable. If the obstacle lacks a plane of symmetry, low-Reynolds-
number �ow is no longer symmetric between the upstream and the downstream
sides.

2.2.3 Superposition

This property is again an immediate consequence of the linearity of the Stokes equa-
tion: if v1(r, t) and v2(r, t) are two solutions of this equation, then λ1v1 + λ2v2

is also a solution with a corresponding pressure gradient, which can be written
∇p = λ1∇p1 + λ2∇p2.

The velocity at the walls is the linear combination of the velocities for solutions
1 and 2 with the same coe�cients λ1 and λ2. Since there exists a unique velocity
�eld corresponding to given boundary conditions, it is the solution λ1v1 + λ2v2 that
is observed experimentally. We can therefore superimpose linearly the velocity �elds
corresponding to di�erent �ows, in con�gurations with identical geometry, provided
that we combine linearly, with the same coe�cients, the values of the velocities at
the walls.

2.2.4 A minimum in the energy dissipation

For given boundary conditions at the walls and at in�nity, a �ow which obeys the
Stokes equation (2.3) corresponds to a minimum in the rate of dissipation of energy
ε due to the viscous mechanism. For a proof see [13, 10].

This property applies only when the Reynolds number is low: at high Reynolds
numbers, turbulent solutions are allowed and dissipate a greater amount of energy
than laminar ones for identical boundary conditions.

2.2.5 Lorentz Reciprocal Theorem

An important property of Stokes �ows is the so-called reciprocal theorem. Let us
consider a closed region of �uid V bounded by a surface S. If we suppose the velocity
�elds v and v′ both satisfy the Stokes equations, and denoting their respective stress
�elds by σ and σ′, the Lorentz reciprocal theorem states, in the integral and local
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form:˛
S

v ·(σ′ ·n) dS =

˛
S

v′ ·(σ ·n) dS or, equivalently ∇·(v ·σ′) = ∇·(v′ ·σ) (2.6)

The proof is easily computed passing through the products σ′e and σ′e and
remembering that p′δijeij = p′eii = p′∇ · v = 0 , the symmetry of σ and ∇ · σ = 0:

σ′e = (−p′δij + 2µe′ij)eij = −p′δijeij + 2µe′ijeij = 2µe′ijeij = σ e′

σ′ijeij =
1

2
σ′ij(∂jvi + ∂ivj) = σ′ij∂jvi = ∂j(σ

′
ijvi)− vi(∂jσ′ij) = ∂j(σ

′
ijvi) = ∇ · (v · σ′)

σije
′
ij = (same steps) = ∇ · (v′ · σ) = σ′ijeij = ∇ · (v · σ′)

The major strength of the reciprocal identity is that it allows us to obtain in-
formation about a �ow without having to solve the equations of motion explicitly,
but merely by using information about another �ow. We will see an application of
this in Section 2.6. It is worth noting, moreover, that if the assumptions ∇ · σ = 0
and ∇ · σ′ = 0 are �relaxed�, we must retain one more term in the previous steps,
obtaining:
˛
S

v · (σ′ · n) dS −
ˆ
V

v · (∇ ·σ′) dV =

˛
S

v′ · (σ · n) dS −
ˆ
V

v′ · (∇ ·σ) dV (2.7)

2.2.6 Total forces and torques balance

As we saw in Section 1.4, the absence of the inertial terms in the equation of motion of
the �uid can be interpreted as an instantaneously quick di�usion and a in�nitely slow
advection of momentum. Thus in the limit of very low Re, velocity perturbations
di�use rapidly relative to the rate at which �uid particles are carried along by the
�ow.

A consequence of this analysis is that in a world of low Reynolds number, the
response of the �uid to the motion of boundaries is instantaneous. Therefore, the
rate at which the momentum of a low-Re �ow is changing is completely negligible
when compared with the typical magnitude of the forces from the surrounding viscous
�uid. As a result, Newton's law becomes a simple statement of instantaneous balance
between external and �uid forces and torques

F(t) + Ffluid(t) = 0 T(t) + Tfluid(t) = 0 (2.8)

This result is hugely useful. Indeed, we can use it to calculate directly the force
exerted by the �uid on an obstacle or a wall, due to his motion.

2.2.7 Swimming at Low Re

When applied to low Reynolds number locomotion, the linearity and time-independence
of Stokes equation of motion lead to two important properties for what we shall call
swimmers. We call a body a `swimmer' if by deforming its surface it is able to sus-
tain movement through �uid in the absence of external (non-hydrodynamic) forces
and torques. Note that the `body' includes appendages such as the cilia covering a
Paramecium or the helical �agella of E. coli.
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Mathematically, the swimming problem is stated as follows. Consider a body
submerged in a viscous �uid. In a reference frame �xed with respect to some arbitrary
reference point in its body, the swimmer deforms its surface in a prescribed time-
varying fashion given by a velocity �eld on its surface, uS(t). A swimmer is a
deformable body by de�nition, but it may be viewed at every instant as a solid body
with unknown velocity U(t) and rotation rate Ω(t). The instantaneous velocity on
the swimmer's surface is therefore given by u = U + Ω × x + uS, which, due to
the no-slip boundary condition, provides the boundary conditions needed to solve
equation 2.3. The unknown values of U(t) and Ω(t) are determined by satisfying
equation (2.8). Applyinig the reciprocal theorem to the swimming problem, we can
subject the shape S(t) to an external force F′ and torque T′, and obtaining from
equation (2.8):

F ·U + T ·Ω = −
ˆ
S(t)

uS · σ′ · n dS (2.9)

The �rst property deriving from the reversibility and the linearity of the Stokes
�ow is rate independence: if a body undergoes surface deformation, the distance
travelled by the swimmer between two di�erent surface con�gurations does not depend
on the rate at which the surface deformation occurs but only on its geometry (i.e. the
sequence of shapes the swimmer passes through between these two con�gurations).
A mathematical proof of this statement can be derived from (2.9), showing that the
net distance traveled by the swimmer does not depend on the rate at which it is
being deformed, but only on the geometrical sequence of shape, and is outlined in
[15].

The second important property of swimming without inertia is the so-called scal-
lop theorem : if the sequence of shapes displayed by a swimmer deforming in a time�
periodic fashion is identical when viewed after a time-reversal transformation, then
the swimmer cannot move on average.

Note that the condition is not that the motion be strictly time-reversal invariant,
with the same forward and backwards rate, but only that the sequence of shapes is
the same when viewed forward or backward in time. This class of surface deforma-
tions is termed reciprocal deformation. The scallop theorem puts a strong geometrical
constraint on the type of swimming motion which is e�ective at low Reynolds num-
bers. An outline of the proof can be again derived from (2.9), and can be found in
[15].

Reciprocal motion cannot be used for locomotion at low Reynolds numbers. Note
that we did not need to assume anything about the geometry of the �uid surrounding
the swimmer; the scallop theorem remains valid near solid walls, and more generally
in con�ned environments. However, the scallop theorem does not hold for a body
making reciprocal motions near a �exible object, such as a wall or another swimmer,
since in that case equation (2.9) must be modi�ed to include uS at the surface of the
�exible object.

In his original article [14], Purcell illustrated the futility of reciprocal motion with
the example of a scallop, a mollusk that opens and closes its shell periodically. In-
dependent of the rate of opening and closing, a low-Reynolds number scallop cannot
swim. Another example of a reciprocal deformation is a dumbbell, made of two solid
spheres separated by time� periodic distance. More generally, bodies with a single
degree of freedom deform in a reciprocal fashion, and cannot move on average.
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Finally, it is worth emphasizing that the scallop theorem is strictly valid in the
limit where all the relevant Reynolds numbers in the swimming problem are set to
zero.

2.3 Force and Torque on a body

Another of the consequences of the Stokes equation is the direct proportionality
between the forces on solid walls and the characteristic velocity of the �uid. We
consider the case of arbitrary motion of a solid, in a �uid which is at rest at in�nity.
We shall thus be able to predict relationships between the forces and rotational and
translational velocities, on the basis of the symmetry properties of the solid object.

To illustrate this assertion, we consider a solid particle of arbitrary shape moving
with translational velocity V (t) and angular velocity Ω(t) through an unbounded,
quiescent viscous �uid in the creeping-�ow limit Re � 1 and Re/S � 1. The
problem of calculating the force or torque on the particle requires a solution of the
creeping-�ow equations, subject to boundary conditions. In dimensional terms, the
problem is given by the equations (2.3), with

v = V + Ω× x on the particle surface S
v→ 0 as |x| → ∞ (2.10)

where x is a position vector measured from the center of gravity of the particle.
The force and the torque on the particle are

F =

ˆ
S

(σ · n) dS , T =

ˆ
S

(x× σ · n) dS (2.11)

The critical di�culty with this problem is that the solution depends on the ori-
entations of V and Ω relative to axes �xed in the particle, as well as on the relative
magnitudes of V and Ω. Thus, for every possible orientation of V and/or Ω, a new
solution appears to be required to calculate v, p, F, or T. Fortunately, however,
the possibility of constructing solutions of a problem as a sum (or superposition) of
solutions to a set of simpler problems means that this is not actually necessary in
the creeping-�ow limit. Rather, to evaluate v, p, F, or T for any arbitrary choice of
V and Ω, we will show that it is su�cient to obtain detailed solutions for translation
in three mutually orthogonal directions (relative to axes �xed in the particle) with
unit velocity V = ei and Ω ≡ 0, and for rotation about three mutually orthogonal
axes with unit angular velocity Ω = ei and V ≡ 0.

To prove this assertion, we return to the full problem (2.3),(2.10),(2.11). For
convenience, we can consider the solution as a superposition of two problems: the
�rst is pure translation with arbitrary velocity V, and the second is pure rotation with
arbitrary angular velocity Ω. We can denote the solutions of these two problems as
(vtr, ptr) and (vrot, prot), respectively, with the corresponding force and torque being
(Ftr,Ttr) and (Frot,Trot). The full solution is then v = vtr + vrot and p = ptr + prot,
and the force and torque are F = Ftr + Frot and T = Ttr + Trot.

Now, let us consider the translation problem:

µ∇2vtr −∇ptr = 0 , ∇ · vtr = 0



26 CHAPTER 2. CREEPING FLOW

vtr = V on S , vtr → 0 at ∞

We see that the problem is linear in V. Thus the solution (vtr, ptr) can depend
only linearly on V, and by the (2.11) this means that the force and the torque must
also be linear functions of V:

Ftr = A′ ·V , Ttr = C ′ ·V (2.12)

whereA′ andC ′ are respectively a second order tensor and a second order pseudo-
tensor. The components of these tensors have a simple interpretation: A′ij and C

′
ij

are the i−components of the force and the torque on the body for traslation with
unit velocity in the ej direction.

An identical analysis also can be applied to the rotation problem and the result
for the force and torque in this case is

Frot = B′ ·Ω , Trot = D′ ·Ω (2.13)

Thus, a propeller rotating at low velocity around its axis in a very viscous �uid
is subjected to a force parallel to its axis: this corkscrew-type e�ect is due to the
lack ofa plane of symmetry normal to the axis of rotation; it is very di�erent from
inertial phenomena, like the Magnus force, which accounts for the motion of ships
or airplanes, propeller- driven through water or air (low-viscosity �uids). Now, com-
bining (2.12) and (2.13), as allowed by the linearity of the governing equations, we
�nd that the force and torque on a particle that moves with arbitrary velocities V
and Ω through an otherwise quiescent �uid is

F = µ(A ·V +B ·Ω) , T = µ(C ·V +D ·Ω) (2.14)

Note that the viscosity will appear linearly in each of the second-order tensor
coe�cients in (2.12) and (2.13), and thus has been factored out, that is A′ = µA
and so on. A, B, C, D are called resistance tensors and their most important
property is that they depend on only the geometry of the particle and are independent
of all other parameters of the problem including, of course, V and Ω.

In the absence of resistance tensors, we could calculate the force or torque on
an arbitrary body that translates and/or rotates with arbitrary velocities V and Ω
only by completely resolving the equations of motion for each change in the relative
magnitudes of V and Ω or in their orientation relative to axes that are �xed in
the body. Indeed, for nonzero Reynolds number, for which the governing equations
are the full, nonlinear Navier�Stokes equations, this is precisely what must be done.
Once the existence of the resistance tensors is recognized, however, we see that the
force and torque for arbitrary V and Ω can be speci�ed completely by solving a
maximum of six fundamental problems, corresponding, respectively, to translation
in three orthogonal directions with no rotation, and rotation about three orthogonal
axes with no translation. These six problems can be solved, once and for all, to
determine the components of the tensors A, B, C, D, and these results can then
be used for all possible combinations of V and Ω.

It must be noticed that many physical problems in microhydrodynamics require
the solution of the motion of a particle in response to prescribed forces and torques in
a known ambient �ow. Such situations can be called mobility problems, in opposition
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to the resistance problem previously described. The linearity can be invoked again
to write:

µV = a · F + b ·T
µΩ = c · F + d ·T

where a, b, c, d are the mobility tensors. Clearly, the resistance and mobility
formulation are related and are formal inverses of each other. Indeed, can be shown
[10] that: (

A B
C D

)
=

(
a b
c d

)−1

An extremely important and general result [13] states the simmetry condition:

A = AT , B = CT , D = DT (2.15)

Since the matrix Aij, which relates Fi and Uj, is symmetric, it can be diagonalized.
There thus exists, for a body of arbitrary shape, a set of orthogonal coordinate axes,
along which each component of the force is directly proportional to the corresponding
component of the velocity:

Fi = µλiVi

(contrary to our usual notation, there is no implied summation on the index i, in
the above equation). The scalar product F ·V representing the energy loss through
viscous dissipation, must therefore be negative for any value of V, implying that
the three eigenvalues λi are all negative. From a geometrical point of view, the
F ·V < 0 relation indicates that the angle between the force F and the direction of
motion must always be greater than a right angle.

2.3.1 Spheres and ellipsoides

In addition to general symmetry properties (2.15), considerable e�ort has been made
to understand the relationships between symmetries in the geometry of the problem
and the forms of the resistance tensors [17]. For example, if we consider the motion of
a body with spherical symmetry in an unbounded �uid, with the origin of coordinates
at the geometric center of the body, it can be shown that:

A = cA1 , D = cDA , C = B = 0

In particular, as we will see in the next section, the Stokes' law implies that
cA = 6πa where a is the radius of the sphere.

On the other hand, for an ellipsoid of revolution with the origin of the coordinate
system at the geometric center and coordinate axes parallel and perpendicular to the
principal axes of the ellipse, it can be shown that

A = diag(a||, a⊥, a⊥) , D = diag(d||, d⊥, d⊥) , B = CT = 0
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2.4 Uniform Flow past a Solid Sphere: Stokes' law

In the previous section we showed that the linearity of the creeping �ow equations
implies a linear relation between forces and velocities. A particular case, where
the expression of the force acting on the particle is simple and well-known, is the
classical Stokes' problem (�rst solved by Stokes in 1851) of the uniform streaming
motion in the positive x direction, past a stationary solid sphere. This problem can
also be viewed as that of a solid spherical particle that is translating in the negative
x direction through an unbounded stationary �uid under the action of some external
force.

We choose a frame of reference whose origin is istantaneously �xed at the center
of the sphere, with the natural spherical coordinates suggested by the simmetry of
the problem. In this coordinate system, with base vectors er, eθ, eϕ , the velocity
can be written:

v = (vr, vθ, vϕ) =

(
∂θψ

r2 sin θ
, − ∂rψ

r sin θ
, 0

)
, v(∞) = U = Uex (2.16)

and we must just solve the biharmonic-like equation, with the boundary conditions:[
∂2

∂r2
+

sin θ

r2
∂

∂θ

(
1

sin θ

∂

∂θ

)]2
ψ = 0 (2.17)


ψ(a, θ) = 0 [vr = 0 at surface]

∂rψ(a, θ) = 0 [vθ = 0 at surface]

ψ(∞, θ) = 1
2
Ur2 sin2 θ [uniform �ow at ∞]

(2.18)

where the last condition follows from the fact that the stream function for a
uniform �ow is (1/2)Ur2 sin2 θ in spherical coordinates. The last upstream condition
(2.18) suggests a separable solution of the form ψ = f(r) sin2 θ, and subsitution of
this into (2.17) gives:

f
′′′′ − 4f ′′

r2
+

8f ′

r3
− 8f

r4
= 0 =⇒ f = Ar4 +Br2 + Cr +

D

r

Imposing the last of (2.18) we have A = 0 and B = U/2, whereas the �rst two
give C = −3U/a an D = Ua3/4. Therefore, the solution reduces to:

ψ = Ur2 sin2 θ

[
1

2
− 3a

4r
+

a3

4r3

]
(2.19)

and the velocity components are, from the (2.16):

v = U

(
cos θ

(
1− 3a

2r
+

a3

2r3

)
, − sin θ

(
1− 3a

4r
+

a3

4r3

)
, 0

)
(2.20)

The pressure can be found by integrating the Stokes equation ∇p = µ∇2v, and
the vorticity taking the curl of v:

p = −3aµU cos θ

2r2
+ p∞ , ω = − 1

2r2

√
1− cos2 θ eϕ
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Figure 2.1: (a) streamlines and contours of constant vorticity for uniform streaming
�ow past a solid sphere. (b) pressure distribution in an axial (ϕ = const.) plane. (c)
Viscous stress components at the surface.

The streamlines, and contours of constant vorticity, together with the pressure
distribuction are sketched in Figure 2.1. The streamlines are symmetrical about a
plane normal to U, as is of course implied by the linearity of v in U; reversing the
direction of U merely leads to a change of the sign of v everywhere. It will also be
noticed that the disturbance due to the sphere extends to a considerable distance
from the sphere, the velocity approaching zero as r−1 at large values of r. As a
consequence, the presence of an outer rigid boundary, for example in the form of a
cylinder with generators parallel to U, can modify the �uid motion appreciably, even
when it is at a dinstance of many diameters from the sphere; likewise the interaction
between two moving spheres many diameters apart can be appreciable.

Clearly, these features of the solution re�ect the absence of the inertia term in
the equation of motion. The equation for vorticity ∇2ω = 0 shows that the �ow
is e�ectively due solely to steady molecular di�usion of vorticity to in�nity in all
directions, the sphere being a source of vorticity as a consequence of the no-slip
condition. There is, in fact, a strong similarity between the transport of vorticity in
2D in axisymmetric �ows and the transport of heat from a heated body. Not sur-
prisingly, constant-vorticity lines are often similar in appearance to isotherms in the
thermal problem. In the simplest thermal problem, however, the surface of the body
would be assumed to be at constant temperature so that the temperature �eld in the
case of pure conduction from a sphere would be spherically symmetric. The sphere
surface is not a uniform source of vorticity. In regions where the velocity gradients
are largest, the surface vorticity is highest. As a consequence, even for creeping �ow
with a spherical body, the vorticity distribution is not spherically symmetric.

In order to �nd the force exerted by the �uid on the sphere, we must evaluate
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the stress tensor at r = a, and integrate it over all the surface. Indicating with n
the outward unit normal vector, the force per unit area normal to a surface is:

t = σijnj =

 σrr σrθ 0
σθr σθ 0
0 0 0

 −1
0
0

 =

 σrr
σrθ
0

 (2.21)

= −σrrer − σrθeθ = (σrr cos θ − σrθ sin θ)ex + (σrr sin θ − σrθ cos θ)ey

and calculating the stress from the de�nition σij = −pδij + µ(∂ivj + ∂jvi)

σrr = −p+2µ∂rvr = 2µU cos θ

(
3a

r2
− 3a3

2r4

)
, σrθ = µ

(
r∂r

(vθ
r

)
+
∂θur
r

)
= −3µUa3

2r4
sin θ

and on the surface of the sphere (r = a) we obtain from (2.21):

t(r = a, θ) =

(
3µU

2a
cos2 θ +

3µU

2a
sin2 θ, 0

)
(2.22)

F(a) =

˛
S

σijnjdS =

ˆ 2π

0

t(a, θ) 2rdrdθ =

(
4πa2

3µU

2a
, 0

)
FD = 6πµaU Stokes'Law

that is the classical result called the Stokes' law of resistance.

It remains to verify the limit of the approximation made using the Stokes' equa-
tion to estimate the �ow �eld. According to the solution (2.20), an estimate of the
magnitude of the viscous force is µ∇2v is µUa/r3. If the sphere velocity is exactly
steady, and the rate of change of v at a �xed point is due simply to the sphere
changing its position relative to the point concerned, the operator ∂t is equivalent to
−U · ∇ . Resuming, and using again the (2.20):

fin ∼ |ρ(−U · ∇v + v · ∇v)| ∼ 2
ρU2a

r2
+
ρU2a

r3
, fvisc ∼ |µ∇2v| ∼ µUa/r3

fin
fvisc

∼ ρaU

µ

r

a
=

1

2

r

a
Re

At position near the sphere the solution is indeed self-consistent with the approx-
imation made to derive it, when Re � 1, but the inertia forces corresponding to
the solution become comparable with viscous forces at distances from the sphere of
order a/Re. At these large distances, the solution and the Stokes' law are therefore
not valid, altough this by itself may not be of consequence since the �uid velocity
and the inertia and viscous forces are all small there. It could in fact be seen [19]
that it is possible to �nd a velocity distribution which is a valid approximation to
the solution of the complete N-S equations everywhere in the �uid when Re � 1,
and which coincides with the above solution, when r/a is of order unity.
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2.5 Singularity and Boundary integral solutions

To solve the creeping-�ow equations (2.3), many techniques have been developed in
the literature, most of them based on the representation of solutions in terms of either
eigenfunction expansion and/or vector harmonic functions [9]. These methods turn
out to be powerful to solve problems in which the geometry of the solid boundaries or
interfaces either coincides with a coordinate surface(s) in some orthogonal coordinate
system (as in the case of the Stokes' problem in Sec. 2.4) or else lies close to such a
surface.

However, the linearity of the Stokes equation allows another class of solution
methods that is more readily applied to problems with complicated boundary ge-
ometries. These methods for solving Stokes equations are based on fundamental

or Singularity solutions , corresponding to the �ow produced by point forces in a
�uid.

For problems involving solid boundaries, a general solution can be obtained in
integral form, corresponding to a distribution of point forces over all of the bound-
aries. Such a solution can be derived making use of the so-called Boundary inte-

gral equations. When a �uid interface is involved, a similar integral formulation
is obtained by generalization to a distribution of singularities at the interface. The
solution of a speci�c problem is then transformed to determining the distribution
of surface forces that is necessary to satisfy boundary conditions. If the boundary
shapes are simpler, an analytic approximation can sometimes be achieved by means
of equivalent, internal distributions of point forces and force multipole singularities:
this is the so-called Singularity method. In the case of complex shapes, the solution
can only generally be accomplished numerically, following the so-called Boundary
integral method [18].

2.5.1 Fundamental solution: the Stokeslet

The solution of the creeping-�ow equations for a point force f , closely related to the
Green's functions of the Stokes �ow, can be found solving the equations

µ∇2v −∇p = fδ(x− x0) , ∇ · v = 0 (2.23)

where f is an arbitrary constant, x0 an arbitrary point, and δ the three-dimensional
Dirac delta function. Introducing the Green's function G, we write the solution in
the form:

vi(x) =
1

8πµ
Gij(x,x0) fj

x0 is usually called the source point or pole, and x the observation or �eld point.
Physically, v(x) expresses the velocity �eld due to the concentrated point force of
strenght f placed at the point x0, and may be iden�ed with the �ow produced by
the slow settling of a small particle.

It is convenient to classify the Green's functions into three categories depending
on the topology of the domain of �ow. First, we have the free-space Green's function
for in�nite unbounded �ow; second, the Green's functions for in�nite or semi-in�nite
�ow that is bounded by a solid surface; and third, the Green's functions for internal
�ow that is completely con�ned by solid surfaces. The Green's functions in the second
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and third categories are required to vanish over the internal or external boundaries
of the �ow. As the observation point x approaches the pole x0 all Green's functions
exhibit singular behaviour and, to leading order, behave like the free-space Green's
function. The Green's functions for in�nite unbounded or bounded �ow are required
to decay at in�nity at a rate equal to or lower than that of the free-space Green's
function. In the next sections, we will treat the Green's function for the free-space,
defering to the next chapter the discussion for the space bounded by an in�nite rigid
plane and by a rigid sphere [18].

The pressure and the stress �elds associated with the �ow may be taken in the
form:

p(x) =
1

8π
Pj(x,x0)fj , σik(x) =

1

8π
Tijk(x,x0)fk (2.24)

where the stress tensor associated with the fundamental solution is de�ned as:

Tijk(x,x0) = −δikPj(x,x0) + ∂kGij(x,x0) + ∂iGkj(x,x0) (2.25)

Substituting the (2.24),(2.25) in the (2.23) we obtain the equations to be satis�ed
to derive these tensors:

−∂kPj(x,x0) +∇2Gkj(x,x0) = −8πδkjδ(x− x0)

∂iTijk(x,x0) = ∂iTjki(x,x0) = −8πδkjδ(x− x0)

The free-space Green's function

It is possible to derive the solution formally by the Fourier transform or by the
method of superposition of harmonic functions [9]. Both of these methods lead to
the following expression:

v(x) =
1

8πµ
G(S)(x− x0) · f , G

(S)
ij (y) =

δij
|y|

+
yiyj
|y|3

, y = x− x0

where G(S)(y) is called the Stokeslet or the Oseen-Burger tensor. The velocity
�eld generated by a stokeslet is plotted in Figure 2.5.3. The pressure and stress �elds
associated to the �ow may be written in the forms (2.24), where:

Pi(y) = 2
yi
|y|3

, Tijk(y) = −6
yiyjyk
|y|5

(2.26)

It must be noticed that P and T represent two fundamental solutions of Stokes
�ow. Speci�cally, P represents the velocity at the point x due to a point source
of strength −8π with pole at x0, or, equivalently, the velocity at x0 due to a point
source of strength −8π with pole at x, whereas:

vi(x0) = Tijk(x− x0) qik = −Tijk(x− x0) qik

where q is a constant matrix, represents the velocity �eld due to a singularity
called the Stresslet with pole at x. Moreover, can be easily shown that the divergence
of the point-force σ has an useful property. Integrating over a closed volume V
enclosed by ∂V , we can use the fact that∇·T = 0 everywhere except at x0, following
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from (2.26). Therefore, choosing a sphere of radius ε arbitrary small, centered in x0

(so that x− x0 = −εn), :
ˆ
V

(∇ · σ)j dV =
1

8π

ˆ
V

∂kTijkfj dV =
fj
8π

˛
∂V

Tijk(x− x0)nk(x− x0) dS(x− x0)

=
3fj
4π

ˆ 2π

0

ˆ π

0

ninjnk
ε2

nk ε
2 sin θ dθ dϕ =

3fj
4π

ˆ 2π

0

ˆ π

0

ninj sin θ dθ dϕ = δijfj = fi

=⇒ ∂kTijk(x− x0) = 8πδijδ(x− x0) (2.27)

An important property of the stokeslet solution, speci�cally for locomotion, is
directional anisotropy. Indeed, we see from equation that if we evaluate the velocity
in the direction parallel to the applied force, then in the direction perpendicular to
it:

v|| = f/4πµr , v⊥ = f/8πµr , =⇒ v⊥ = 2v|| with r = |y|

For the same applied force, the �ow �eld in the parallel direction is therefore twice
that in the perpendicular direction. Alternatively, to obtain the same velocity, one
would need to apply a force in the perpendicular direction twice as large as in the
parallel direction (F⊥ = 2F||). Such anisotropy, which is reminiscent of the anisotropy
in the mobility matrix for long slender bodies, is at the origin of the drag-based
propulsion me thod employed by swimming microorganisms (see [15]).

2.5.2 The boundary integral equation

In many cases the solution of linear, elliptic, and homogeneous boundary value prob-
lems may be represented in terms of boundary integrals involving the boundary
values of the unknown function and its derivatives. A convenient starting point for
deriving a boundary integral equation for the Stokes' �ow is the �relaxed� version
of the Lorentz reciprocal identity (2.7) written identifying v′ and the corresponding
stress tensor σ′ with the point-force velocity �eld and stresses:

˛
S

v · (σ′ ·n) dS −
ˆ
V

v · (∇ ·σ′) dV =

˛
S

v′ · (σ ·n) dS −
ˆ
V

v′ · (∇ ·σ) dV (2.28)

with vi(x) =
1

8πµ
G

(S)
ij (x, ξ) fj and σik(x) =

1

8π
Tijk(x, ξ)fk

Recalling the divergence of Tijk from (2.27) and substituting in (2.28):

˛
S

G
(S)
ij (x− ξ)σij(ξ)nkdS(ξ) = −8πµ

[˛
S

vi(ξ)Tijk(x− ξ)nkdS(ξ)+

ˆ
V

vi(ξ)δijδ(x− ξ)dV (ξ)

]
where we used that our generic velocity �eld solves the Stokes equation (∇·σ = 0)

and we assumed the surface normal vector n̂ pointing out of the �uid region1. Using

1we shall distinguish in the following such surface normal vectors from the generic ones pointing

inside the surface by using a �hat� n̂ symbol.
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the properties of the Dirac and Kroenecker delta functions, the last integral simplify
to vj(x) in the interior of V , and zero outside, and we obtain2, if x ∈ V \∂V≡S:

v(x) = − 1

8πµ

˛
S

[σ(ξ) · n̂(ξ)] ·G(S)(x− ξ) dS(ξ)−
˛
S

v(ξ) ·T(x− ξ) · n̂ dS(ξ)

(2.29)
This is the famous integral representation for the solution of the creeping-�ow

equations which is usually attributed to Ladyzhenskaya [20], stating that a Stokes
velocity �eld may be reconstructed throughout a region V using only values of the
velocity and stress �elds on the boundary of V .

The �rst integral on the right-hand side represents clearly a velocity �eld gener-
ated by a distribution of surface forces of strenght tdS = σ ·n̂dS, since G(S)(x−ξ) is
the velocity �eld generated by a point-force in ξ. By analogy with potential theory,
this integral is usually termed the single-layer potential .

The second integral on the right-hand side is denoted as the double-layer po-

tential and has a density function that is just the velocity v on the boundaries S of
the �ow domain. This term can be interpreted as a distribution of sources or sinks
of strenght v · n̂ and a true �double layer� of Stokeslet, indeed if we write it using
the (2.25):

vjTijkn̂k = −Piv·n̂+(∂kG
(S)
ij +∂iG

(S)
kj )vjn̂k and

˛
S

Pin̂jdS = 2

˛
S

xi − ξi
|x− ξ|3

dS =
4

3
πδij

the �rst term is recognized to correspond to sources and sinks, whereas the second
one, as we will see in the next subsection, corresponds to opposing Stokeslets of dipole
strength v displaced in the direction of n̂, plus opposing Stokeslets of dipole strength
|v|n̂ in the direction of v. This symmetric placement of point forces implies that no
net force or torque is exerted on the �uid.

Of course, the equation (2.29) and the corresponding form for the pressure do not
provide a solution for any speci�c problem until the density functions v and t are
speci�ed on S. In fact, all that we really have done is to obtain an integral formula
for v that is equivalent to the di�erential form of the creeping-�ow equation (2.3).
To obtain a solution for any particular problem, we must determine the density
functions so that the velocity �eld v satis�es the boundary conditions on S. In
general, this requires numerical solution of the integral equations that result from
applying boundary conditions to (2.29) . In fact, this is the essence of the so-called
boundary-integral method for solution of creeping-�ow equations; this technique
has been used widely in research and is especially suitable for free-surface and other
Stokes' �ow problems with complicated boundary geometries [18].

Flow past a Solid Body

In the case of a Stokes' �ow past a stationary solid surface, the boundary integral
equation can be considerably simpli�ed. Indeed, the no-slip condition requires v|S =
0 and the second term in (2.29), the double-layer potential, vanishes. Therefore, if
we call v∞(x) the solution at large distance from the body (the undisturbed �ow),

2This formula says nothing about the boundary points x ∈ ∂V .
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the boundary integral equation becomes:

v(x) = v∞(x)− 1

8πµ

˛
S

[
1

|x− ξ|
+

(x− ξ)(x− ξ)

|x− ξ|3

]
· t(ξ) dS(ξ) (2.30)

where x is now a �xed point in the �ow �eld and t(ξ) = σ(ξ) · n̂(ξ)dS is the
distribution of surface stress on the boundary S that can be obtained solving the
(2.29) on the surface of the body, by means of the no-slip condition. Therefore, a
general solution of the creeping-�ow equations for �ow past stationary solid surfaces
can be expressed completely as a superposition of surface forces (stokeslets) at the
boundaries S. In fact, a solution of the creeping-�ow equations can always be written
solely as a distribution of stokeslets over the bounding surfaces, even if these are not
solid and stationary, but the simple identity of the stokeslet density function with the
actual surface stress is valid only for this special case. To retain the simple physical
interpretation of the density functions for other kinds of boundaries, we must use
the more general form (2.29).

2.5.3 Singularities: multipole expansion for rigid bodies

The solution for creeping �ow past a body, that we write in the former section in
terms of a surface distribution of point forces (stokeslets) on the surface of that body,
can sometimes be replaced with an internal distribution of point forces and higher-
order singularities. The principle is analogous to that of the multipole expansion of
electrodynamics. Indeed, at great distances from a rigid body we cannot distinguish
between the points ξ on the surface and a reference origin 0 located in a convenient
point inside the body. In this way, at the �rst order we �nd that G(S)(x − ξ) ∼
G(S)(x), so that may be moved outside the integral in (2.30). The integral of what
remains, σ · n̂, is simply the hydrodynamic drag F on the particle, and we obtain a
disturbance due to the motion of the particle which is indipendent on the details of
the body shape:

vd(x) = v(x)− v∞(x) ∼ F ·G(S)/8πµ

In order to �nd the higher order correction for the disturbance �eld, we notice
that due to the linearity of the Stokes equations (2.3), a derivative of any order of
the fundamental solution is still a solution of the creeping-�ow equations. Thus, if
we introduce the following notation for the stokeslet solutions:

v(S)(x; f) =
f

r
+

(f · x)x

r3
, p(S)(x; f) = 2

f · x
r3

, with r = |x| (2.31)

then any derivative of v(S) and p(S) is a solution of (2.3) corresponding to a point
singularity that is a derivative of the same order of a point force f . Now, if the point
force is located at x = ξ, we formally set r � |ξ| and the stokeslet solution can be
expanded in form of a generalized Taylor series about ξ = 0:

v(S)(x− ξ) =
∞∑
n=0

1

n!
(ξ · ∇ξ)

nv(S)(x− ξ)

∣∣∣∣
ξ=0

=
∞∑
n=0

(−1)n

n!
(ξ · ∇)nv(S)(x) (2.32)

=
∞∑
n=0

(−1)n

n!
ξk1 · · · ξkn∂k1 · · · ∂knv(S)(x) = v(S)(x)−(ξ·∇)v(S)(x)+

1

2
(ξ·∇)2v(S)(x)+...
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with a similar series expression for p(S). Inserting the expansion into the velocity
integral representation (2.30):

vdi (x) =
1

8πµ

∞∑
n=0

˛
Sp

[(σ · n̂)jξk1 · · · ξkn ]dS ∂k1 · · · ∂knG
(S)
ij (x) (2.33)

= − 1

8πµ
( FjG

(S)
ij (x)−DjkG

(D)
ijk (x) + ... )

with G
(D)
ijk (x) = ∂kG

(S)
ij (x) , Fj =

˛
Sp

(σ · n̂)jdS , Djk =

˛
Sp

(σ · n̂)jξkdS

Thus, for �ow past a solid body, we always can use the generalized Taylor series to
replace the surface distribution of stokeslets with an equivalent internal distribution
of stokeslets and higher-order singularities (inside the body). This series, takes the
name of multipole expansion, and its terms are named multipole moments.

The obvious question is whether there is any advantage to be gained, especially
in view of the fact that we must replace a surface distribution of stokeslets only
with a whole hierarchy of higher-order singularities inside. One possibility is that
we may be able to replace the surface distribution with an internal distribution of
lower spatial order. Thus, for example, for axisymmetric bodies, it may be possible
to express the solution in terms of a line distribution of singularities along the axis
of symmetry of the body. In this case, the 2D integral equation that arises from
application of boundary conditions would be replaced with a 1D, though more com-
plicated, integral equation. Another possibility is that we may be able to replace a
stokeslet distribution on a body that has a very complicated surface with an internal
distribution of singularities on a nearby surface that has a much simpler geometry.
In any case, however, the use of internal distributions of singularities will be an ad-
vantage only if the number of terms in the multipole expansion can be limited to
a relatively small set, i.e. only if the Taylor series can be truncated after a �nite
number of terms. Intuitively, for an exact solution, this will require bodies of simple
geometry in relatively simple �ows. The criteria for recognizing problems for which
internal distributions of singularities o�er an advantage over the solutions in terms
of a surface distribution of stokeslets is, actually, a subject of current research.

Stokeslet Dipole

Anyway, equation (2.32) shows us that in the far �eld, regardless of the details of
the body shape, all disturbance �elds exhibit certain common features. The leading
term, or monopole, will be a Stokeslet with coe�cient F equal to the force exerted
by the �uid on the particle. This �eld, decaying as r−1 away from the solid particle,
will be present if and only if the particle and �uid exert a net force on each other.

The next e�ect is a force dipole of strenght represented by D , a constant second-
order tensor, and velocity �eld :

G
(SD)
ijk (x) =

1

r3
(δijxk − δikxj − δjkxi) + 3

xixjxk
r5
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Figure 2.2: Stresslet velocity �eld constructed as a sum of the Stokes' dipoles.

v(SD)(x; f ,b) ≡ −(b · ∇)v(S)(x; f) =
(f × b)× x

r3
−
[

(f · b)

r3
− 3(f · x)(b · x)

r5

]
x

p(SD)(x; f ,b) = −(b · ∇)p(S)(x; f) = 2µ

[
− f1 · b

r3
+

3(f1 · x)(b · x)

r5

]
(2.34)

This corresponds to the velocity and pressure �elds, generated by a pair of forces,
one at x = b/2 with strength f and the other at x = =b/2 with strength =f ,
in the limit as |b| → 0 (see, for example, the sketch in Fig. 2.5.3). In fact, as
in the electrodynamics analogous, this is suggested by the expansion b · ∇v(S) '
−u(S)(x) + u(S)(x + b).

Rotlet and Stresslet

It is useful to express the Stokes' dipole solution as the sum of two component parts,
because each has a clear physical signi�cance. These components are de�ned in
a manner that is analogous to the symmetric and antisymmetric components of a
second-order tensor, that is:

Djk = sjk + rjk , v(SD)(x; f ,b) = v(SS)(x; f ,b) + v(R)(x; f ,b)

v(SS),(R)(x; f ,b) =
1

2
[v(SD)(x; f ,b)± v(SD)(x; f ,b)] (2.35)

The symmetric part, v(SS), is known as the stresslet solution, and the antisymmet-
ric part, v(R), is known as the rotlet solution. And substituting the dipole expression
2.34 in the de�nitions 2.35 we obtain the explicit forms:

v(R)(x; f ,b) =
b× f × x

r3
p(R)(x; f ,b) = 0

The physical signi�cance of the rotlet solution is that it is the �ow that is due
to a singular, point torque at the origin. Indeed, if we calculate the moment exerted
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Figure 2.3: Singularities velocity �elds. (Art Evans)



2.5. SINGULARITY AND BOUNDARY INTEGRAL SOLUTIONS 39

on the �uid outside an arbitrary control surface S centered at the origin by a rotlet
of strength m = b× f , we have:

M =

˛
S

x× (σ(R) · n) dS = 8πµm

The stresslet solution takes the form:

v(SS)(x; f ,b) =

[
− (f · b)

r3
+

3(f · x)(b · x)

r5

]
x

p(SS)(x; f ,b) = 2µ

[
− f · b

r3
+

3(f · x)(b · x)

r5

]
The stresslet exerts zero net force or torque on the �uid, that is F(SS) = M(SS) =

0, and can be thought of as a straining motion of the �uid that is symmetric about
the f , b plane with principal axes of strain f + b, f − b, f × b (see Fig.2.5.3). The
stresslet and rotlet velocity �eld have been plotted in Figure 2.5.3

Stokes Quadrupole and Potential Dipole

The Stokes' quadrapole solutions, obtained with a following derivation, are more
complicated:

v(S4)(x; f ,b, c) ≡ (c · ∇)(b · ∇)v(S)(x; f)

p(S4)(x; f ,b, c) ≡ (c · ∇)(b · ∇)p(S)(x; f)

and we will not give the explicit expression. However, one component turns out
to be particularly useful in the solution of Stokes' �ow problems, and that is the
potential dipole solution, namely

v(PD)(x; d) ≡ −1

2
∇2v(S)(x; d) = − d

r3
+

3(d · x)x

r5
, p(PD) = 0

The potential dipole exerts zero net force on the �uid. Physically, it corresponds to
a mass dipole at the origin � that is, the �ow generated by a mass source at x = d/2
and a mass sink at x = =d/2 in the limit |d| → 0.

General Rules for singularity solutions

Unfortunately,the use of fundamental solutions to solve Stokes' �ow problems by
means of internal distributions of singularities has not yet become completely system-
atized. Many problems involving �ow in the vicinity of a solid sphere can be solved
by a superposition of point-forces and/or higher-order singularities at the center of
the sphere. Some problems involving prolate axisymmetric ellipsoids (spheroids)
can be solved by a superposition of point-force and higher-order singularities on
the symmetry axis between the two foci of the ellipse. However, general rules that
are guaranteed to guide the choice of singularities or the choice of internal surface
geometry for all possible situations cannot be o�ered.
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If there is a net force on the body, the leading-order term must be a stokeslet or
stokeslet distribution, and experience suggests that the stokeslet is always accom-
panied by the potential dipole. If there is a net torque on the body, we require a
rotlet or rotlet distribution, and this will be the leading term if the net force is zero.
Finally, if the net force and torque are both zero, the leading term often (though not
always) involves the stresslet.

In the next section we will show how the methods is easily applied in the case of
a Stokes' problem for a rigid sphere. A more extensive treatment and many example
can be found in [21].

Distribution of singularities for the traslation of a sphere

As we showed in Section 2.4, the translation of a spheical particle through a quiescent
�uid, problem equivalent to a stationary uniform �ow past the particle, produces a
net force (drag) on the sphere. Thus, to construct a solution by means of internal
singularities we require a stokeslet of strength f located at the sphere center. How-
ever, by itself, the stokeslet �ow does not satisfy the no-slip and kinematic boundary
conditions at the surface of the sphere. Taking, as in the former, the velocity of the
sphere U and its radius a, the no-slip condition is:

v = U at r = a (2.36)

whereas the Stokeslet at r = a takes the form

v(S)(x = aer, f) =
f

8πµa
+

(f · er)era
2

8πµa3
=

f + (f · er)er

8πµa
(2.37)

Hence it is clear that the stokeslet solution alone cannot satisfy the no-slip con-
dition. However, if we add at the sphere surface a potential dipole

v(PD)(x = aer,d) = − 12

8πµa3
+

3a2(d · er)er
8πµa5

=
−d + 3(d · er)er

8πµa3
(2.38)

and comparing (2.37) and (2.38) it is obvious that a superposition v(x) =
v(S)(x; f) + v(PD)(x; d) of the stokeslet and potential dipole solutions will satisfy
the creeping-�ow equations and also the boundary condition (2.36), if

v(S)(x = aer, f) + v(PD)(x = aer,d) =
f + (f · er)er

8πµa
+
−d + 3(d · er)er

8πµa3
= U

=⇒ a2f − b = 8πµa3U , a2f + 3d = 0 =⇒ d = −a
3U

4
, f = 6πµaU

Therefore, not surprisingly, we recover Stokes's law: f = FD.

2.6 Faxen's Law for a body in an unbouded �uid

In the former, in particular in the Sections (2.4) and (2.5.3), we found through two
di�erent methods the force acting on a sphere traslating in a quiescient �uid, or



2.6. FAXEN'S LAW FOR A BODY IN AN UNBOUDED FLUID 41

equivalently for the uniform �ow past a sphere at rest. In both of the cases the
force exerted by the sphere on the �uid turned out to be equal to the Stokes' law
expression FD = 6πµaU. Now, we consider a correction to this formula in the case of
an undisturbed generic steady �ow v∞(x) not necessarily uniform, using the Lorentz
Reciprocal theorem (2.6). Clearly, the result we will obtain can be interpreted as
the correction to an undisturbed �ow due to the motion of a traslating sphere, so we
can �nd the multipole moments of (2.33) by means of this method.

To apply the Reciprocal theorem to the problem, we need a �ctitious velocity
�eld, therefore, let us suppose that we have obtained the solution of the creeping-
motion equations for uniform �ow U past a stationary body of surface S. We denote
the solution of this problem as v and the corresponding surface-force vector on S as
t = σ · n. Then, applying the reciprocal theorem:

U ·
˛
S

t′dS = U · F′ =
˛
S

v′ · t dS , t = σ · n

If we have actually solved the uniform-�ow problem, we can immediately deduce the
surface-force on the same body held �xed in any indisturbed �ow v∞(x) that satis�es
the Stokes equations. In particular, we have:

U · F′ =
˛
S

v∞ · t′dS (2.39)

i.e. we can obtain the surface-force t′ for the indisturbed �ow v∞(x) by means of a
simple integration of this formula, with t known from the solution of the uniform-�ow
problem, but without any need to solve the actual corresponding Stokes equations.

A powerful result discovered originally by Faxén, is obtained applying the (2.39)
to a stationary solid sphere of radius a. In this case, the solution for uniform �ow is
known from 2.22, and hence:

t(r = a) =
3

2a
µU =⇒ U · F′ =

ˆ
S

v∞(x) ·
(

3µU

2a

)
dS

and since U is arbitrary:

F′ =
3µ

2a

ˆ
S

v∞(x) dS

Finally, supposing the origin to be at the center of the sphere, we can expand
v∞(x) on S in a multipole representation around x = 0:

v∞(x) = v∞(0) + x · ∇v∞(0) +
xx

2
: ∇2v∞(0) + ...

F′ = 6πµa

[
v∞(0) +

a2

6
∇2v∞(0) + const∇4v∞(0) + ...

]
where the integrals of the odd-number terms in the expansion vanish because S is
a sphere. Moreover, because of the Stokes equation ∇4v∞(x) = ∇∇2p = 0 and the
same for all the terms ∇2nv∞(x). Thus, we obtain the exact result:

F′ = 6πµa

(
v∞(x) +

a2

6
∇2v∞(x)

∣∣∣∣
x=0

)
(2.40)
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In the original work of Faxén an analogous relation can be �nd for the torque, in the
more general case where the sphere is also rotating:

M = 8πµa3Ω∞(0)

These important results are known as Faxén Laws. According to these laws, if we
specify the undisturbed velocity, then the force on a sphere can be calculated directly
from the formula 2.40, without any need to solve the problem corresponding to the
free-stream velocity v∞(x). The interesting feature of this law is that the correction
to the Stokes' Law required by the general ambient �ow v∞(x) is relatively simple,
being proportional to the ambient pressure gradient ∇v2

∞(0) = ∇p(0)/µ in the
center of the sphere.

Moreover, we have shown what the expression for the second moment in the
multipole expansion for a sphere is, and that is the higher order one. In general
using the right t and v∞(x), the higher order moments can be found for every
particle shape.



Chapter 3

Hydrodynamic interactions

The mathematics is not there till we put it there.
Sir Arthur Eddington

When two particle immersed in a viscous �uid approach each other, the motion
of each one is in�uenced by the other, even in absence of interparticle interactions,
such as van der Waals and electrostatic forces. The velocity �eld generated by the
motion of one particle is trasmitted through the �uid medium and in�uences the
motion, the force, the torque and the stresses on the other particle. This kind of
interaction is called hydrodynamic.

We have seen in the previous chapter that the presence of a rigid body in a
Stokes' �ow produces a disturbance in the velocity �eld that decays as r−1, where r
is the distance from the body. The rate of decay depends on the type of disturbance:
if there is a net hydrodynamic force on the body, the far-�eld disturbance �ow is
dominated by the stokeslet velocity �eld (2.31) with a strength f that depends on
the net force, and the velocity disturbance decays as r−1; if there is no net force on
the body, but the undisturbed �ow is linear so that the dominant disturbance mode
is a rotlet or stresslet, the disturbance decays as r−2, and so forth.

As a consequence of the long-range perturbation to the velocity �eld in such
a case, we may expect signi�cant hydrodynamic interactions when other bodies or
boundaries are present, even when the separation distance is relatively large. For
example, the sedimentation velocity of a solid particle is still signi�cantly in�uenced
by walls or other particles when separation distance is more than 10 particle radii
away.

Unfortunately, most of the classical analytical techniques are very di�cult (or
impossible) to apply. The exceptions are two spheres, or a sphere and a plane wall,
for which bispherical coordinates may be employed to obtain exact eigenfunction
expansions for solution of the creeping-�ow equations. But, since only a few cases can
be approached with this technique, it is essential to have other solution procedures
that do not rely on a speci�c coordinate system. One is the boundary-integral method
[18], but ultimately this requires numerical methods for solving the boundary-integral
equations.

The alternative methods of attack depend on the separation between the surface;
in particular, if the particles are widely separated (the distance between closest points

43
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on the surfaces is much greater than the particle size), a general asymptotic method
known as the method of re�ections is available. Problems near contact problems
are not reviewed here, because are beyond the scopes of this work, but a complete
treatment can be found in [10]. Moreover, we will only treat interaction between only
two particles, indeed, because of the linearity of the Stokes equations, the general
construction for a N -particle system is, with only minor changes in the notation,
essentially the same as the framework for the pair interaction problem.

We divide the discussion on interactions according to particle-particle (Section
3.1) and particle-wall interactions (Section 3.2) .

3.1 The method of re�ections

Two particles will be considered widely separated when a/d� 1, where a is the char-
acteristic particle size and d is the particle-particle distance. In this approximation, a
general asymptotic scheme known as method of re�ections, valid for arbitrary shapes
has been shown to be convergent [23], and its applicability relies on the possibility
to express the solution analytically as a series in terms of the small parameter a/d.

The basic idea is to approximate the solution as a series of terms that satisfy
the creeping-�ow equations at each level, but only alternatively satisfy the boundary
conditions at the solid surfaces. In the zeroeth order approximation, the solution is
formed by a superposition of the �eld produced by the isolated particle solutions, and
the hydrodymanic interactions are neglected. We have shown in Section 2.5.3 that
the disturbance �eld of an isolated particle may be written as a multipole wxpansion
and that such an expansion is particularly useful in the study of the far �eld. The
construction of the series is thus based on the idea that the ambient �eld about each
particle consists of the original ambient �eld plus the disturbance �eld produced by
the other particle(s). The method is iterative, since a correction of the ambient �eld
about a given particle generates a new disturbance solution for that particle, which in
turn modi�es the ambient �eld about another particle. The process of incorporating
the e�ect of an ambient �eld (called incident) with a new disturbance �eld is called
a re�ection, hence the name of the method.

To illustrate the procedure in the case of two particles, let us suppose that the
particle 1 and 2 move in an unbounded �uid with velocities U1 and U2 , with position
x1,2 = x1,2(t), and isolated particle solutions v1,2(x). On the surfaces S1 and S2 of
each particle, the boundary conditions are

v
(0)
1,2 = U1,2 + ω1,2 × (x− x1,2)− v∞ on S1,2

and so if we set v(0) = v∞ + v
(0)
1 + v

(0)
2 , we see that the errors in the boundary

condition follow as v
(0)
2 (x) for a point x ∈ S1 and v

(0)
1 (x) for a point x ∈ S2. This

error will be at least as small as a/d, since the decay in v
(0)
1 and v

(0)
2 is at most

that of a Stokeslet. The next re�ection �elds, the �rst order ones, will reduce this
error. They are formally de�ned as the solutions to the Stokes equations vanishing
at in�nity with the additional conditions

v
(1)
1 = v12 = −v2 on S2

v
(1)
2 = v21 = −v1 on S1
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Now the errors in the boundary condition scale as v12(x) for a point x on the
surface of particle 1, and v21(x) on particle 2. The error has been reduced, since the
far �eld values of v12(x) and v21(x) are smaller (by a factor a/d) than the near �eld

values of the same order, which are of the same order of the far �eld values of v
(0)
1,2(x).

The higher order correction are obtained in exactly the same manner. For example,
the next re�ections are obtained with v12 and v21 playing the roles previously played
by v

(0)
1,2. The re�ected �eld of order n will be denoted by :

v
(2)
1 = v121(x) = −v212(x) on S2

v
(2)
2 = v212(x) = −v121(x) on S1

In general, we will indicate with a superscript n the �eld taking into account all
the re�ection up to the n-th:

v
[n]
1 =

∑n
k=1 v

(k)
1 = v1 + v12 + v121 + v1212 + ... (3.1)

v
[n]
2 =

∑n
k=1 v

(k)
2 = v2 + v21 + v212 + v2121 + ...

This will give an error in the boundary condition is given by the values taken by
the highest order re�ected �elds evaluated at the surface of the other particle, i.e
(a/d)n.

The most natural form for the re�ected �elds is the multipole expansion (2.32),
with moments determined by application of the Faxen Laws on the incident �elds.
For simple shapes as spheres (Section (2.6)) or ellipsoids, analytical forms of the
Faxen laws are available, and so the method of re�ections will yield analytical solu-
tions.

The method of re�ections works equally well for both the resistance and the
mobility problems, but its main application in microhydrodynamics lies in mobility
problems because they arise more frequently, and the method produces the desired
solutions directly, i.e., without an inversion of the resistance problem. The second
reason is that the far �eld forms of the mobility problems consist of dipole-dipole
interactions, which are much weaker than the monopole-monopole interactions usu-
ally encountered in resistance problems. Neverthless, in the following, we will make
use of the method in a particular resistance problem (Chapter 5), so we start for
explaining this case.

3.1.1 Resistance problems

As we saw in Chapter 2, in the resistance problems particle motions and the ambi-
ent �eld are prescribed and the force, torque and higher order moments have to be
determined. Also, the zeroeth order �elds v1 and v2 produce exactly the prescribed
particle motions. In subsequent re�ections, the re�cted �elds satisfy the no-slip con-
dition. Thus at each re�ection, the multipole expansion for the re�ected �eld always
leads o� with a Stokeslet. The strength of the Stokeslet f , i.e., the hydrodynamic
force on the particle, from (2.33) always scales as the di�erence between the ambient
velocity and the particle velocity. Since the latter is zero at the higher order re�ec-
tions, f will be equal to the magnitude of the incident �eld, which in turn is simply
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the far �eld limit of the previous re�ection. Thus in resistance problems we tipically
have the following behaviour:

F(n+1)
α ∼ O

(a
d

)
F

(n)
β

the (n+ 1)-th re�ection's contribution to the hydrodynamic force on the particle
α will be a/d times smaller than n-th re�ection's contribution to particle β. In
particular, for �ow past two stationary bodies, we have:

F (N) ∼ O
(a
d

)N
The scale for other moments, such as the torque and stresslet, may be obtained

by reference to the Faxén relations; the end result is that for a given re�ection, the
n-th moment is O(a/d) smaller than the (n− 1)-th order moment.

3.1.2 Mobility problems

In mobility problems, particle motions in a speci�ed ambient �eld are to be deter-
mined. The motions arise from prescribed forces and torques on each particle. As
in the resistance case, we must start with the single-particle solutions v1 and v2,
but in the re�ection procedure some di�erences have to be considered. In fact, the
zeroeth order �elds produce exactly the prescribed forces and torques. Therefore,
in subsequente re�ections the particle motions must be such that the re�ected �elds
are force-free and torque-free. These translational and rotational velocities will scale
as the ambient velocity and velocity gradient. Furthermore, the multipole expansion
for the re�ected �elds will lead o� with a stresslet of strength S of the same order
as the ambient velocity gradient. Thus, in mobility problems we tipically have a
behavious as:

U(n+1)
α = O

(a
d

)3
U

(n)
β

where two powers in a/d are due to the far �eld decay of the stresslet �eld, while

the additional factor is due to the relative magnitudes of U
(n)
β and S

(n)
β

And �ven the same amount of information concerning the Faxen relations for
the moments, and after the same number of re�ections, the results for the mobility
funcions will be accurate to higher order in a/d than the result for the resistance
functions. Thus, usually, is convenient to solve the entire collection of mobility
problems and then invert these if the resistance solutions are also required.

3.2 Particle-Wall interactions

In many aspects, the analysis for particle-wall interactions is similar to that for
particle-particle interactions. Here again, we will only treat the case of the particle
far away from the wall, with a small a/R, where R is the distance from the wall.
Under these circumstances a suitably modi�ed form of the method of re�ections
is appropriate, with the re�ections o� the wall conveniently represented by image
singularities. This approach has been used since for a long time, and started with
the works of Lorentz [24], Faxén [25] and Blake [26].
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3.2.1 Stokeslet near a wall

We need to construct the Greens functions GW (x,x0) and PW (x,x0), for the velocity
and pressure �elds associated with a unit point force acting in the ek direction
direction at x = x0 and satisfying the no-slip condition on the plane boundary. The
no-slip condition is applied only on the plane boundary (not on a body near the
boundary, so that a surface or line distribution of singularities in the body can be
used to satisfy the no-slip condition). Assumed that the wall is located in z = 0, we
must impose that:

GW(x, y, z = 0; x0) = 0

A �rst approach, proposed by Lorentz, used the reciprocal theorem to obtain an
image system for the wall. An alternative way is to follow Blake, taking a point
force of equal magnitude but opposite sign at the image point inside the wall xim

0 =
(x0, y0, − z0) to write the boundary condition on the wall in a more convenient way,
and solving the Creeping Flow equations for a velocity �eld

v =
1

8πµ
(G(S)(x,x0) + Gwd(x,x0)) · f , GW = G(S) + Gwd

by means of the two dimensional Fourier transform. In this way, Blake showed
that G may be constructed from a Stokeslet and a few image singularities including
a Stokeslet, a potential dipole, and a Stokeslet doublet

GW(x,x0) = G(S)(x−x0)−G(S)(x−xim
0 ) + 2z20G

(D)(x−xim
0 )−2z0G

(SD)(x−xim
0 )

(3.2)
where x̂ = x− x0, and xim

0 is the image of x0 respect to the wall. And:

G
(S)
ij (x) =

1

|x|
+
xixj
|x|3

G
(D)
ij (x) = ± ∂

∂xj

(
xi
|x|3

)
= ±

(
δij
|x|3
− 3

xixj
|x|5

)

G
(SD)
ij (x) = ±∂Si1

∂xj
= x1G

(D)
ij (x)± δj1xi − δi1xj

|x|3

3.2.2 Stokeslet near a big sphere

An interaction similar to the wall-particle one, is that between large and small par-
ticles, which although involve multiple length scales. Let a and b denote the size
of the large and small particles, respectively, and let d denote a measure of the gap
between them. In the case a � d � b, whereas the larger particle is in the far
�eld of the smaller one, the smaller particle is in the near �eld of the larger one,
whence a special form of the method of re�ections is required. The key idea is that
over length scales associated with the larger particle, the disturbance �elds produced
by the smaller one may be approximated by �elds produced by equivalent a small
number of Stokes singularities, remembering that the higher order ones diminish in
in�uence as powes of a/d.
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So, for the re�ections at the larger particle, the entire multipole solution has to
be retained, or equivalently we must use the exact result for the image singularities
induced by Stokes singularities near the particle. Such information is available only
for simple shapes - such as spheres, cylinder, and plane wall - so there is a restriction
on the shape of the large particle or wall.

The simplest case is that of a big sphere, and the �rst singularity, the Stokeslet,
can be calculated with two di�erent analysis for the axisymmetric part (Stokeslet
directed along the line of centers) and the trasverse case. The calculation can be
found in [10], and was �rstly performed by Oseen; the resulting Green's function of
the �ow is:

GRS
ij(x,X) = G(S)(x̂)− Rδij

r?|X|
− R3

|X3|
x̂?i x̂

?
j

r?3
−|X|

2 −R2

|X|

(
X?
iX

?
j

R3r?
− R

|X|2r?3
(X?

i x̂
?
j+X

?
j x̂

?
i )+

+
2X?

iX
?
iX

?
nx̂

?
n

R3r?3

)
− (|x|2 −R2)Φij (3.3)

Φij =
|X|2 −R2

2|X|3

[
− 3x̂?iXj

Rr?3
+
Rδij
r?3
− 3R

x̂?i x̂
?
j

r?5
− 2X?

iXj

Rr?3
+

6Xjx̂
?
i X̂

?
k x̂

?
k

Rr?5

+
3R

|X?|
x̂?iX

?
j r

?2 + x̂?jX
?
i |X?|2 + (r? − |X?|)r?2|X?|δij

r?3|X?|(r?|X?|+ xkX∗k − |X?|2)

− 3R

|X?|
(|X?|x̂i + r?X?

i )(X?
j r

?2 − |X?|2x̂?j + (xj − 2X?
j )r?|X?|)

r?2|X?|(r?|X?|+ xkX∗k − |X?|2)2

− 3R

|X?|
xiX

?
j + |x||X?|δij

|x||X?|(|x||X?|+ xkX?
k)

+
3R

|X?|
(|X?|xi + |x|X?

i )(|X?|xj + |x|X?
j )

|x||X?|(|x||X?|+ xkX?
k)2

where R is the radium of the big sphere, X = x0 is the position of the Stokeslet,
X? = X/|X|2 is the image point inside the sphere, x̂ =x − X, x̂? = x − X?, and
r? = |x̂?|.

Higdon [27] observed that this formula may be interpreted as a line distribution
of singularities with poles in the interior of the sphere. Speci�cally, they found
that the radial component of the image system may be resolved into a Stokeslet, a
potential dipole, and a stresslet with poles at the inverse point X?. The corresponding
transverse component may be resolved into a line distribution of Stokeslets, potential
dipoles, and Stokeslet doublets extending from the origin up to the inverse point.



Chapter 4

Cilia dynamics

In the matter of physics, the �rst lessons should contain
nothing but what is experimental and interesting to see.

A pretty experiment is in itself often more valuable
than twenty formulae extracted from our minds.

Albert Einstein

Cilia and �agella are two di�erent names that are often used interchangeably for
the same structure of eukaryotic cells. As suggested by the meaning of the words
(lat. cilia �eyelashes�, �agellum �whip�) the term cilia tends to be used when the
cellular appendages are short and abound on a single cell, whereas the term �agellum
is used for longer �laments, of which only one or two are usually found per cell. Their
inner structure is characterised by a cylindrical core called the axoneme, which is
a cylindrical arrangement of elastic �laments (microtubules) and force generating
molecular motors (dynein).

In this chapter we will give a synthetic overview of the problem arising in the
study of the cilia mechanics in the �rst section, then we will show the characteristic
of the single cilium structure and dynamics in the second section, and at last we
will discuss the self-synchronization e�ects on cilia arrays due to hydrodynamics
interactions. A complete treatment of the subject can be found in [28], which we
shall follow closely in the �rst sections of the chapter.

4.1 Principal issues

Although it is well established that �agellar and ciliary movements are based on
active sliding similar to the well-known mechanism in muscle, the �agellar system
seems to be more complicated. This is because the muscle system shows only one-
dimensional contraction, due to active sliding occurring homogeneously along the
muscle �laments, whereas the �agellar system gives rise to rhythmic initiation and
propagation of two- or three-dimensional bends, due to a time- and space-dependent
pattern of active sliding within the �agellum. In this work we will focus only on the
ciliary structure and motion. One challenging problem that immediately arises is
how bending waves are self-organized in cilia and �agella. Structural and functional
considerations of cilia and �agella are necessary in solving this problem.
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If many such �agella or cilia are close together, they exhibit on a large scale
propagating waves known as metachronal waves. In ciliated surfaces of protozoa, for
example, where beating cilia occur in large numbers, the activity of adjacent cilia
is coordinated via hydrodynamic interactions to produce metachronal waves passing
over the surface. Another interesting problem then arising is how metachronal waves
are self-organized in the ciliated surface. In attempting to solve this problem, it
is important to consider the advantage of these wave phenomena from a functional
point of view. Through the metachronal coordination of ciliary activity, ciliated
systems seem to achieve higher e�ciency for the propulsion of �uids than could be
achieved by random movement of the cilia.

Of particular interest is the presence of the two self-organizational phenomena on
quite di�erent levels. On one hand, the coordination in time and space of mechano-
chemical processes at the molecular level produces bending waves at the level of
an individual cilium. On the other hand, the metachronal coordination of such
activity in individual cilia in turn generates wave phenomena at the level of a ciliated
system. This suggests that regardless of the system level, universal principles may
apply to the coordination in time and space of the 'active' processes at the lower
level leading to self-organization of temporal, spatial and functional orders at the
upper level. Cilia and �agella, thus, provide a good example for studying functional
and structural hierarchy. In spite of many studies of the structure, biochemistry
and motility of individual organelles, few attempts have been made to identify the
universal principles.

Like other nonlinear distributed systems, these motile systems exhibit a large
repertoire of self-organizational phenomena at each level. At the individual or-
ganelle level, �agella and cilia show regular beating patterns such as oscillations
and excitability, with or without the absolute and relative refractory period. They
also show irregular patterns such as reversal of the direction of wave propagation and
intermittent beating caused by spontaneous stopping and starting transients. At the
ciliated-system level, groups of cilia show at least four types of regular metachronal
waves depending on the relationship between the beat direction of individual or-
ganelles and the propagating direction of the metachronal waves (see section 4.4).
They often show irregular patterns due to a weak metachronism, e.g. sometimes two
oppositely propagated metachronal waves collide to disappear (annihilating waves)
or sometimes they collide to evoke a new metachronal wave (non-annihilating wave
or soliton). Irregular patterns of this kind have been studied less intensively than
regular patterns. Recently the presence and role of irregularity, or chaos, have been
pointed out in various biological systems. This suggests that rather than considering
them separately, we should consider both regular and irregular patterns as general
phenomena characterized by their degree of order (or the degree of disorder).

4.2 Structure of a cilium

Flagella and cilia are living motile organelles projecting from the surface of eukaryotic
cells. They produce bending waves to propel single cells in a medium or to move
�uid over the �xed cell surface. Most of them beat at ∼ 10− 40 Hz, but the form of
the beat is quite variable. Their length ranges from 2 µm to several millimetres and
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the diameter is about 0.2 µm. Therefore, the typical Reynolds number is Re ∼ 10−3

and the Creeping Flow approximation can be applied.
Strictly speaking, �agella and cilia have very diverse ultrastructures depending

on the species from which they come, but they are generally similar to one another
and have a basic structure of microtubules in arrangements called axonemes[36]. So
these di�erent names are merely a matter of de�nition and the experimental results
of one system can be assumed to apply to the other. In most cases, therefore, it is
not necessary to distinguish between the two systems.

As pointed out before, many �agella and cilia possess an identical axoneme struc-
ture in spite of their various beating patterns. Throughout the length of the cilium,
nine microtubules are arranged to form a basic structure of the axoneme though its
cross-sectional patterns vary with the distance from the tip.

To emphasize this structural asymmetry one of the ciliary axonemes, seen in a
longitudinal section, and a series of base-to-tip cross-sections at di�erent levels are
illustrated in Figure 4.1:

� At level (1) , nine singlet microtubules and a central pair of singlet microtubules
are arranged. No other speci�c structures can be seen.

� At level (2), instead of singlet microtubules, nine outer doublet microtubules
are arranged around the central pair. This microtubule arrangement is known
as the 9 + 2 axoneme [34].

� Level (3) is the transition zone where the central pair terminates.

� At level (4), instead of doublet microtubules, nine triplet microtubules are
arranged to form a basal body.

The intact ciliary or �agellar axoneme is surrounded by an extension of the cell
membrane and bathed in cytoplasm. This cytoplasmic communication with the cell
body, where ATP is produced by mitochondria, provides the necessary channel for
supplying the ATP to the motile system of the axoneme. The transport process of
the ATP along the �agellum is simple di�usion. A function of the membrane is thus
to maintain the proper concentration of ATP and essential ions (e.g. Mg2+) around
the axoneme.

4.3 Kinematics and dynamics of the single cilium

For its structure and its typical behaviour a cilium can be treated as a typical device
for low-Reynolds swimmer, also because of its charateristic function of pushing and
deplacing a �ow with an e�ective net force. As anticipated, cilia generally show
asymmetric beating in a cycle that can be separated into two phases: the e�ec-
tive stroke and the recovery stroke (Fig.4.3). This non-reciprocal motion allows an
e�ective push on the �uid, according to the scallop theorem (see section 2.2.7).

During the e�ective stroke the cilium only bends a little, except near its base, and
then swings rapidly around the basal region more or less in one plane. This is followed
by the recovery stroke in which a bend is initiated at the base and propagates to the
tip of the cilium. As a result, the cilium moves more slowly back to the starting point
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Figure 4.1: On the top (left): Schematic drawing of a median longitudinal section
of an axoneme (left), and the cross-section as viewed from base to tip (right) at each
level as indicated: A, B and C, are the A-, B- and C-subtubules; CN, the central
pair of singlet microtubules; M, the cell membrane; R, radial spokes; L, the ciliary
necklace. (1): At the tip, the B-subtubules disappear, but the A-subtubules remain
in the axoneme. (2): The '9 + 2' axonemal structure is retained along most of the
length of the �agellum. (3): The transition zone is described as the interval between
termination of the central tubules and origin of the C-subtubules. (4): The basal
body is composed of nine sets of triplet microtubules, each triplet containing the A-,
B- and C-subtubules.

On the top (right): Electron micrographs (a) depicting the structure and specula-
tive power stroke of a single headed dynein molecule, as schematically illustrated in
(b). Apo refers to the nucleotide free dynein structure and corresponds to the post-
power stroke conformation, whereas ADP·Vi refers to the ADP with vanadate con-
struct that is thought to mimic the pre-power stroke conformation corresponding to
the ADP·Pi state. The arrow indicates 15nm.

Below: 3D drawing of the axoneme structure. Modi�ed from [28].
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Figure 4.2: On the top: Schematic illustration of a processive molecular motor
(in this case myosin) moving along a polar �lament (in this case actin) as observed
experimentally in [29]. Taken from [30, 31].

In the middle: Schematic illustration of dynein induced microtubule sliding with
and without geometric constraints. The case of freely sliding microtubules is re-
alised in axonemes whose nexin links are broken, which disintegrate upon activation
of dynein [30, 31]. Taken from [28].

Below: Comparison of a typical relationship between microtubule position and
bending pattern: (A) straight up; (B) bent by the contractile microtubule mechanism
; and (C) bent by the 'sliding microtubule mechanism'. The contractile microtubule
mechanism suggests that the microtubule on the outer side of a bend will change
its position tipward relative to that on the inner side (shown by the arrow). The
outer side of the microtubule will stretch and the inner side will relatively contract,
to cause a bend. In contrast the sliding microtubule mechanism predicts that the
microtubule on the inner side of a bend will slide tipward (shown by the arrow) to
form the bend.
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of the e�ective stroke. The resultant beat cycle is either planar or three-dimensional
depending on whether the cilium recovers in the same plane as the e�ective stroke.

Thus, the study of the cilium kinematics is centered on �nding which solution
of the creeping �ow equation with speci�c boundary conditions, is such that the
observed motion is achieved, and which structural and physical characteristics of
the ciliym in�uence this solution. Recently, some authors [35] showed how this
kinematics could derive entirely by an e�ciency reasoning. They determined nu-
merically the kinematics and energetics of the most e�cient cilium, by computing
the time-periodic deformation of a wall-bound elastic �lament leading to transport
of a surrounding �uid at minimum energetic cost, where the cost is taken to be the
positive work done by all internal molecular motors. The optimal kinematics are
found to strongly depend on the cilium bending rigidity through a single dimension-
less number, called the Sperm number (which measures the ratio between the cilium
length and the elasto-viscous penetration length) and closely resemble the two-stroke
ciliary beating pattern observed experimentally.

Figure 4.3: The beating cycle of a cilium consists of the e�ective stroke (1 - 3) in
which the extended cilium moves rapidly toward one side by making an 'oar-like'
movement, and the recovery stroke (4 - 6) in which the cilium moves more slowly
back by propagating a bend from the base to the tip. The e�ective stroke occurs
more or less in one plane. The recovery stroke swings either in the same plane or out
of the plane. The arrows indicate the water �ow caused by activity of the organelles.

Dinamical Models

The principal question that arises is thus: how can bending waves be generated by
the action of molecular motors within the axoneme? The 9+2 axoneme is inherently
active. A large number of dynein molecular motors are located in two rows between
neighbouring microtubules. In the presence of ATP, which is a chemical fuel, these
motors can generate forces and thus induce local displacements between adjacent
microtubules. Dyneins induce relative forces between neighbouring microtubules.
As a result of these forces, the �laments have the tendency to slide with respect to
each other (see Fig. 4.2). If such a sliding is permitted globally, the �laments simply
separate but no bending occurs. Bending results if the global sliding is suppressed by
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rigidly connecting the �lament pair in the region close to one of the two ends. In this
situation, sliding is still possible locally, however, but only if the �laments undergo a
bending deformation. This coupling of axonemal bending to local microtubules liding
has been demonstrated experimentally. In situations where the axoneme is cut at its
basal end, �laments slide and in the presence of ATP separate without bending [36].
Small gold-beads speci�cally attached to microtubules in fully functioning �agella
can be used to directly visualize the local relative sliding during beating [37].

The dynamics of axonemal bending and wave patterns have been addressed the-
oretically by several authors[28]. One can distinguish two principally di�erent mech-
anisms to generate oscillatory deformation patterns of the axoneme.

� (i) Deterministic forcing: a chemical oscillator could regulate the dynein mo-
tors to be activated and deactivated periodically. In this case, the internal
active system creates a dynamical force pattern, which drives the system in a
deterministic way [39].

� (ii) Self-organized beating: the axoneme oscillates spontaneously as a result of
the interplay of force-generating elements and the elastic �laments. Machin [40]
and Brokaw [41] suggested the possibility of self-organized beating assuming a
force-generating system capable of oscillations.

Patterns of beating have been studied using numerical simulations of a variety of
di�erent models [40, 43]. The e�ect of a coupling of the motor activity to the sliding
displacement as well as to curvature were discussed in order to �nd speci�c situa-
tions where simulated and observed bending waves could be matched qualitatively
and quantitatively. Other authors [45], instead of looking for speci�c models charac-
terized the general properties of the class of systems which can be called internally
driven �laments and for which the axoneme is an example, focusing on an oscillating
instability of the motor��lament system.

In this systems, in general, spontaneous oscillations occur via a so-called Hopf
bifurcation [44], where an initially stable quiescent state becomes unstable and starts
to oscillate. The parameter governing the instability is the concentration of ATP
CATP : and in the vicinity of the bifurcation, the behaviour of the system is governed
by linear terms which are generic and do not depend on the microscopic details, and
the general behaviours of the system are characterized from a few assumptions [45].

4.4 Collective cilia dynamics: Metachronal Waves

As we mentioned in the �rst part of this Chapter, synchronism and metachronism are
widely found in populations of cilia. Cilia are generally arranged in rows across and
along the cell surface of protozoa and on respiratory-tract epithelia. The movements
of adjacent cilia are synchronized to beat in phase along one direction, but out of
phase along another direction which is at right angles (often perpendicular) to the
lines of synchronism. Waves of ciliary movements, known as metachronal waves,
propagate along this out-of-phase direction.

The metachronal waves passing across the ciliated surface would look something
like the waves of motion of wheat when the wind blows over a �eld. The advantages
of the metachronal coordination of cilia are to increase the amount of �uid propelled
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and to maintain continuity of �ow [46]. Individual ciliary movement takes a di�erent
form depending on the ciliary system (e.g. planar, helical, oscillatory, or excitable
beating). Thus, as shown in Figure 4.4 , at least four main patterns of metachronism
have been recognized according to the relationship between the direction of the ef-
fective stroke of the ciliary beat and the direction of propagation of the metachronal
waves [47]

When metachronal waves travel in the same direction as the e�ective stroke, this
is called a symplectic metachronism. The coordination is called antiplectic when
metachronal waves and the e�ective stroke point in opposite directions. When an
observer, looking in the direction of metachronal wave transmission, observes an ef-
fective stroke toward the right perpendicular to the wave direction, it is called a
dexioplectic metachronism. The mirror-image of this con�guration is called laeo-

plectic. The latter two types of metachronism are due to the three-dimensional beat
cycle of the cilium.

In dexioplectic and laeoplectic metachronism, the ciliary beat cycle consists of
a relatively faster e�ective stroke, in which the cilium is extended and rotates in a
vertical plane about its base, and a relatively slower recovery stroke, in which the
cilium bends closer to the cell surface and rotates in a horizontal plane, either anti-
clockwise or clockwise as viewed from above the plane. This sideways recovery stroke
is of great advantage in reducing the resistive forces which may interfere with the
continuity of the forward �ow generated by the e�ective strokes.

Figure 4.5 illustrates the �uid volume in�uenced by the movement of a cilium
(termed 'envelope of �ow') exhibiting a beat cycle typical of the lateral cilia of Mytilus
gill and the corresponding laeoplectic metachronal wave. Strong viscous coupling
takes place between cilia in the plane of the e�ective stroke, as the envelope of �ow
of the e�ective stroke is more extensive than that of the recovery stroke (producing
faster �uid �ows during the e�ective stroke than during the recovery stroke).

Moving cilia in this plane synchronize when the large envelopes of the e�ective
strokes overlap extensively in the plane of beat. Perpendicular to the plane of the
e�ective stroke, relatively weak coupling takes place between adjacent motile cilia
because the cilia move to one side in their recovery stroke and the envelope of �ow in
the recovery stroke will be asymmetrical with respect to the plane of the synchronism.

Through this asymmetrical viscous coupling, the lateral movement of one cilium
in its recovery stroke can interact with the lateral movement of the adjacent cilium
in the direction of the sideways recovery stroke. Consequently, adjacent cilia will be
out of phase with one another, hence the metachronism [46].

Dynamical models

The observation of the metachronal self-organized behaviour of cilia, generates a
natural question: why would these appendages phase lock in such a manner?
The internal actuation of each cilium is independent from that of its neighbors,
and they do not communicate with each other except through the �uid. However,
when they are closely packed on surfaces, cilia arrays display the collective behavior
described in the former. Naturally, the physical origin of this kind of coordinated
beating is the central question of ciliary dynamics, which a number of theoretical



4.4. COLLECTIVE CILIA DYNAMICS: METACHRONAL WAVES 57

Figure 4.4: Diagram showing metachronal waves. (A): Cilia are arranged in rows
across and along the cell surface. The arrow E shows the direction of the e�ective
stroke. The arrows S, A, L and D represent the directions of symplectic, antiplectic,
laeoplectic and dexioplectic metachronal waves. In the case of symplectic or antiplec-
tic metachronism, cilia in lines (1,2,3), (4,5,6) and (7,8,9) beat synchronously. In the
case of laeoplectic or dexioplectic metachronal waves, cilia in lines (1,4,7), (2,5,8) and
(3,6,9) beat synchronously. (B): The full cycle of a typical ciliary beating position
at equal intervals in time (left) and the position of an array of cilia at a given time
(right). The upper array (denoted by S) and lower array (denoted by A) represent
symplectic metachronism and antiplectic metachronism, respectively. M.D. and E.D.
represent the direction of metachronal waves and the e�ective stroke, respectively.
Each cilium has the same number assigned to the identical bending position during
a cycle. From [48].



58 CHAPTER 4. CILIA DYNAMICS

Figure 4.5: (A): The shape and relative size of the 'envelopes of �ow' formed by the
e�ective and recovery strokes of a ciliary beat. The dotted area is a rough image
of the extent of the envelope. During the recovery stroke the cilium moves back
in a clockwise direction (as shown in the view from above), causing asymmetry in
the recovery stroke. The resulting asymmetry provides viscous coupling between
adjacent motile cilia, perpendicular to the plane of the e�ective stroke. Every other
stage in the beat cycle is numbered. The recovery stroke starts at stage 2 and ends
at stage 5, followed by the e�ective stroke which starts at stage 5 and ends at stage
7 (or 1). From [46].
(B): Laeoplectic metachronal waves. The cilia in row 1 (identical to row 7) are at the
end of their e�ective stroke. The numbers assigned to the various stages of the beat
cycle are the same for Fig. 4.26A and B. E.D. and M.D. indicate the direction of the
e�ective stroke and that of the propagation of the metachronal wave, respectively.
From [49].
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studies have attempted to answer [6, 7, 22, 50]. Two di�erent approaches have been
proposed.

In the �rst one, the mechanics of each cilium is modeled as accurately as possible,
and numerical simulations are used to compute the collective beating [6] The crucial
ingredient in that approach is to correctly model the internal load-dependent force
generation in the axoneme (without load dependence, or feedback, there is no phase
locking as can be expected [22]). With that approach, it is found that two cilia
starting randomly end up beating in perfect synchrony within two beating cycles
[6]. If instead there are a large number of cilia, waves arise naturally as a result
of hydrodynamic interactions . Subsequent work showed that as the waves develop
from arbitrary initial conditions the rate of work done by the cilia as they are beating
is decreasing [6]. Physically, because of viscous drag, it is energetically advantageous
for one cilium to beat in the presence of a neighboring cilium with a similar phase.

The second approach considers simpli�ed models for the dynamics of the cilia,
providing analytical insight into the necessary conditions for phase locking [22, 7, 50].
An early study considered a regular lattice of cilia, where the direction of the beating
plane is assumed to obey a balance between rotational Brownian motion and rotation
induced by the �ow created by all other cilia. For small enough temperature, a
transition is observed between a state with no average net �ow, and a state where
all cilia point in the same direction and drive a net �ow [50]. Further modeling is
provided by considering a simpli�ed load-dependent internal molecular engine. In
that case, metachronal waves arise only if a constant phase shift is assumed to exist
between each cilium and its neighbor [50].

Motivated by nodal �ows in development [51], a second study considered cilia
whose tips perform three-dimensional trajectories over a surface. Each cilium is
modeled by a sphere subject to an active load-dependent force, and interacting hy-
drodynamically with a second cilium. Depending on the relative position and ori-
entation of the two cilia models, in- phase (φ = 0) or out-of-phase locking (φ = π)
arise from random initial conditions [7]. A similar model with two sphere-like cilia
rotating due to an applied torque near a wall was recently proposed. In that case,
in-phase locking is obtained provided that the circular trajectory of each cilium is
allowed to vary in response to hydrodynamic interactions [22].

A recent table-top experiment has been used to examine the physics of hydro-
dynamic synchronization [52]. In this work, a pair of centimeter-sized rectangular
paddles are immersed in silicone oil with a viscosity 105 times that of water. The
paddles are rotated by motors that deliver constant torque. In accord with the the-
oretical results of [22], a small compliance was required for phase locking. The time
scale for synchronization was long compared with the paddle rotation period, and is
governed by the strength of the hydrodynamic interaction between the paddles. To
achieve steady phase locking, the driving torques had to be closely matched.
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Chapter 5

Optimal cilia kinematics

Numerical results

If we knew what it was we were doing,
it would not be called research, would it?

Albert Einstein

In this chapter we build some simple models which allow us to study in more
detail the kinematics of arrays of cilia. We focus on the total force exerted by
the cilia on the �uid they are immersed in, which because of the property of Low-
Reynolds numbers �ows, can be calculated simply by the kinematics of the single
cilia. Throughout the chapter we ask the fundamental question of which is the best
kinematics to exert a maximal net force on the surrounding �uid. In the case of an
array of cilia attached to a rigid sphere, this is the same force that the motion of
cilia causes on the sphere, allowing for instance the motion of microorganisms like
the Paramecium.

In the �rst section, we discuss the approximation made to model the complex
geometry of the single cilium and to simplify the problem of the hydrodynamical
interactions between cilia. In the second section we show the numerical methods
and the results obtained with the �rst simplest problem of the interaction of two
ideal cilia near a rigid plane wall. Then, we generalize the results to the case of
N -cilia arrays. The third section is devoted to the more complex problem of the
motion near a rigid sphere. At last, in Section 5.5 we analize the case of an in�nite
array near a plane wall.

5.1 Ideal cilia: approximations and kinematics

We start considering a cilium to be an appendage of lenght L, bounded to a solid
generic surface, that could be plane, spherical or of any shape. The system is im-
mersed in a �uid of viscosity µ, density ρ, and the motion will be supposed to be
always with Re/S � 1, where in this case S = U/Lω and ω is the typical frequency
of stroke of a cilium.

In order to simplify the geometry of the problem, we want to model the force
exerted by the moving cilium on the �uid with that exerted by a more handable
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Figure 5.1:

rigid particle. Obviously, the simplest shape we can consider, for both symmetry and
analytical reasons, is the spherical one. Therefore, we will approximate the e�ect of
each cilium's motion on the �uid with that of a sphere of radius a . L, centered at
the mass center (or an e�ective point of application) of the cilium, distant d from
the wall. The sphere will exert a force F on the �uid during the motion, and will
experience viscous drag friction.

Now we have to model the e�ect of the motion of a generic other cilium (particle)
on our ideal spherical one (particle 1). Due to the motion of a particle, the velocity
�eld of the �uid will change in a complex fashion. As we saw in the previous chapters,
the simplest way to model the e�ect of an obstacle's motion on a �uid, is to consider
the action of a point force centered on the mass center (or an e�ective point of
application) of the cilium structure. This minimal approximation represents the �rst
order disturbance in the multipole expansion 2.32, and is largely used in literature for
objects even more complex than cilia, and in this speci�c case has allowed to show,
in the interaction dynamics of 1D and 2D array of cilia, the arising of metachronal
waves [22].

We restrict ourselves to the case of a far-�eld interaction, justi�ed by opportune
geometric condition guaranteeing the distance between the particles to be such that
|x2−x1| � a. In this approximation, we can consider the e�ects of each particle as a
point-force acting on the �uid instantaneously with velocity v1 and v2, respectively.
Therefore, we shall consider the one-to-one interaction between two cilia and the
wall as an interaction between a Stokeslet with strenght equal to the drag force F1,
centered at the center of mass the particle 1, and a sphere centered in the center of
mass of the second one. (see Fig. 5.1)

Clearly, to know the force on the particle 1 due to the motion of the particle
2, the force on particle 2 due to the motion of the particle 1 has to be taken into
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account. Thus we will use the so-called re�ection method analysed in Section 3.1,
which consists in considering the in�uence of one particle as it was moving alone in
the �uid, on the other. Then, re�ecting the found �eld for the second particle to
calculate the correction to the motion of the one supposed isolated. Indicating with
rij the distance between the particles, the �eld calculated taking into account the
n-th re�ection gives:

F[n] =
n∑
i=0

F(i) , F
[n]
j→i = −aGj · [6πµavj − aGiF

[n−1]
i→j ] ⇒ |F(n)

j→i| ∼
(
a

rij

)n

F
(0)
i = 6πµavi , F

(n)
i = 6πµavi + F

(n)
j→i , i, j = 1, 2; i 6= j

where Gj = G(xi,xj) is the Green function corresponding to a Stokeslet with
the particular boundary conditions considered. At the �rst order, we shall write,
instantaneously: {

F1 ' F
[1]
1 = 6πµa[v1−a G(x1,x2) · v2]

F2 ' F
[1]
2 = 6πµa[v2−a G(x2,x1) · v1]

(5.1)

where should be evident that the �rst term is of order a/rij and the second of
order (a/rij)

2. We underline that (5.1) does not give exactly the �rst order re�ection
in the meaning of equation (3.1), because we are neglecting the second term in the
Faxén expansion (2.40), considering that the particle i only sees a point force �ow
coming from particle j. Clearly, the term ∇2Gj would be small near particle i,
and our approximation is meaningful, but does not give a zero-velocity �eld at the
�rst order in a/rij on the surface of particle j, where the laplacian term becomes
important. Therefore, for our purpose we shall consider the force to be:

F1,2 = 6πµa

(
v1,2 −

G(x1,x2) · F2→1

6πµ

)
This reasoning can directly generalized for the case of the interaction among N

particle. Indeed, thanks to the linearity of the Stokes �ow, we can decompose the
�uid disturbed �eld acting on the i-th particle as the sum of the N − 1 disturbance
�eld induced by the other particles motion.

F1(t) = 6πµa
[
v1(t)− a

∑N
i=2 G(x1(t),xi(t)) · vi(t)

]
...

... · · ·
Fj(t) = 6πµa

[
vj(t)− a

∑N
i 6=j G(xj(t),xi(t)) · vi(t)

]
...

... · · ·
FN(t) = 6πµa

[
vN(t)− a

∑N
i 6=N G(xN(t),xi(t)) · vi(t))

]
(5.2)

F(t) = −
N∑
i=1

Fi(t)
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5.2 Numerical approach

In all the cases we will consider, the Green function G(xi,xj) is a nonlinear function,
and it's quite prohibitive to �nd an analytic solution to the systems (5.1) or (5.2).
Therefore, we shall proceed numerically, and this is the approach we will follow:

� We �rst �x the motion of the cilia that are in the system under attention, trying
to catch the most simple and important physical features of their strokes. We
impose the position xi(t) and the velocity vi(t) for every cilium and for every
time t. Clearly, for the reason we explained in the previous chapters (section
(2.2.7)) the motion has to be periodic and not reciprocal, to be e�cient at low
Reynolds numbers. Therefore we impose a typical constant frequency ω for
the motion of the sphere, and the initial conditions xi(0), vi(0) can be more
suitably considered in terms of the phase di�erences φi respect to a reference
cilium with i = 1, the frequency ω, the separation between two cilia δ, the
amplitude A and the distance from the wall d;

� We use the physical and geometrical parameters of the problem to write a
dimensionless version of (5.2) and (5.1);

� For every time t we calculate the total force F(t) on the system, summing the
di�erent contributes in the interactions;

� We take the average on one period of F. We call this net average force

F̄({xi(0), vi(0)}Ni=1, ω, A) ≡ F̄(ω, {φi}Ni=2, δ, d, A) =
ω

2π

ˆ 2π/ω

0

F(t) dt

� We optimize on all the possible values of the phase di�erences {φi(0)}Ni=2 for a
�xed ω, looking on the discrete distribution which maximizes the value of F̄,
for di�erent con�gurations of the parameter δ and A.

5.3 Interaction among cilia near a rigid plane

We start considering the simple geometry of spheres moving near a rigid plane wall.
In this case, the Green Function is the (3.2),

We rewrite GW as:

GW (x,x0) = GW (x̂, X̂) =
1

|x̂|
+
x̂ix̂j
|x̂|3
− 1

|X̂|
− x̂ix̂j

|X̂|3
+

−2d(1∓ d)

(
δij

|X̂|3
− 3

X̂iX̂j

|X̂|5

)
∓ 2d

δj1X̂i − δi1X̂j

|X̂|3

where x̂ = x − x0, X̂ = x − x0
(im) , and x0

(im) = (x0, y0,−z0). The function
GW (x,x0) is, as anticipated, highly non linear.
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Figure 5.2: 2 cilia con�guration near a plane wall.

5.3.1 2 cilia: Linear motion

The simplest problem we can consider is a con�guration of two cilia in reciprocal,
rectilinear motion (see Fig. 5.2). We impose the motion of the sphere to be oscillatory
with frequency ω and amplitude A, on a segment parallel to the x direction, and
distant d from the wall:

x1(t) = (−δ/2 + A cos(2πt), 0, d) , x2(t) = (δ/2 + A cos(2πt+ φ), 0, d)

This kind of motion, as expected, does not produce a net average force on the
�uid if φ = 0, because of the reversibility of Stokes �ow. In the following, we
will nondimensionalize with d = 1 and taking a = 0.01, to be sure the far �eld
approximation works.

Looking at Fig. 5.3 and 5.4, it is clear that the strenght of maximum average
force decreases rapidly with increasing distances from the wall d, while it converges
to a �nite value F̄M 6= 0 with increasing separation between the cilia δ.

In the same �gures, the plot of F̄M in function of φ shows the expected zero force
when the cilia motion is synchronized, or in counter phase. But the most important
result is that the force is symmetric respect to π, and best phase di�erence is

φ
(2,lin)
eff = π/2

i.e. the cilia push is more e�cient when their motions are in quadrature. This
result could not be trivially predicted by simmetry because of the non linearity of
the equations, and is quite remarkable.
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Figure 5.3: Maximum average force in function of the phase di�erence (on th left),
and the reciprocal distance (on the right), for two cilia moving on a segment near a
wall. φeff = π/2, d = 1

Figure 5.4: Maximum average force in function of the phase di�erence (on th left),
and the distance from the wall (on the right), for two cilia moving on a segment near
a plane wall. φeff = π/2, d = 1
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Figure 5.5: 2 cilia elliptical motion near a plane wall.

5.3.2 2 cilia: Elliptical motion

The �rst complication we can add to the problem, is to condider an elliptical motion
of the spheres. This con�guration is closer to the e�ective physics of the cilia's
strokes, indeed, when one sphere moves on the upper half of the ellipse its force
transfert to the �uid models the e�ective stroke of the cilium, on the other hand,
when the sphere runs over the half of the ellipse closer to the wall it models the
recovery stroke. The kinematics is given by:

x1(t) = (−δ/2 + A cos(2πt), 0, d+B sin(2πt))

x2(t) = (δ/2 + A cos(2πt+ φ), 0, d+B sin(2πt+ φ))

In this geometry (sketched in Fig. 5.5), we observe at �rst a remarkable di�erence
with the previous one: the average force for a zero phase di�erence does not vanish.
Then, we plotted the usual graph showing the average force as function of φ, for
di�erent values of the geometrical parameters of the problem.

Varying distance from the wall

The �rst behaviour we can check is a decreasing maximal force with an increasing
distance from the wall, where the two Stokeslet become more isolated and the inter-
action with the wall become weaker. This is shown in Fig.5.6 for a circular trajectory
with distant cilia, but works equally in all the possible con�gurations.

Varying axis ratio

Putting d = 1, we can now explore the changing of the phase and the maximal force
behavious in function of the geometry of the ellipse, i.e. the ratio between the length
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Figure 5.6:

Figure 5.7: F̄ in function of φ with d = b = 1, varying A in the range 0.5 to 5. On
the right: F̄M in function of A.

of its axes. In Figg. 5.7, 5.8 we see how the di�erent values of the force depends on
the phase for di�erent ratio between the axes.

We see that in the circular case, the best phase di�erence is 0 or 2π, such that the
cilia prefer to be in perfect synchronization, and increasing both the transverse and
the parallel axis' length, the force increases because of the more intense interaction
with the wall in the �rst case, and between the cilia in the second case. The phases
become quickly close to the value π/2, as soon as we turn from the circular trajectory
towards a less interactive con�guration. At last, it shifts back slowly towards the
synchronized con�guration, as we increase again the interaction.

Varying reciprocal distance - circular trajectory

The most interesting result arises from the analysis of the behaviour of the maximal
force for di�erent reciprocal distances between the two cilia. In Figg. 5.10, 5.11, 5.12
we show, as in the former, the variation of the force in function of the phase, and the
maximal value for di�erent distance, in three di�erent circular con�gurations, with
increasing radius.
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Figure 5.8: F̄ in function of φ with d = b = 1, varying B in the range 0.1 to 1. On
the right: F̄M in function of B.

Figure 5.10: a = b = 0.2

Figure 5.9: Higly irregular behaviour of the force in function of the phase di�erence,
for a = b = 0.2, d = 1, δ = 0.40 → 0.42. On the right an enlargement of the red
curve.

When the distance between the cilia is small and the radius is big, i.e. when they
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Figure 5.11: a = b = 0.6

Figure 5.12: a = b = 0.8
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get really close during the motion, the non linearity of the system and gives a higly
irregular behaviour (shown in Fig. 5.9), and since the far-�eld approximation is not
valid for this small distances, we can't extract any physical information from this.
We thus performed the analysis for distance big enough to stay away from this higly
non linear regime.

We see that for small values of the radius, thus when we have a weaker interaction,
the system tends to reach a minimum value very quickly. For intermediate radius, it
shows an e�cient distance for which the force is maximal. Increasing the radius, and
thus the interaction, the force decreases continously, approaching to its minimum
value without a maximum.

5.3.3 4 cilia: Linear and elliptical motion

The more interesting problem of the interaction among 4 cilia, can be easily imple-
mented in terms of numerical �economy�, and is a better candidate to see a linear
organisation of the best phase di�erence distribution. Neverthless, despite our ex-
pectations, the best phase distribution in the case of linear and elliptical motions
are:

#d A δ φ
(4,lin)
eff

20 1 2.1 (0 2.9845 1.5708 1.0996)
20 1 2.3 (0 1.7279 1.5708 1.2566)
20 1 2.5 (0 1.7279 1.5708 1.2566)
20 1 3 (0 1.7279 1.5708 1.4137)
20 1 3.5 (0 1.7279 1.5708 1.4137)
20 1 4 (0 1.5708 1.5708 1.4137)
20 1 5 (0 1.5708 1.5708 1.5708)
20 1 10 (0 1.5708 1.5708 1.5708)
20 1 102 (0 1.5708 1.5708 1.5708)
20 1 103 (0 1.5708 1.5708 1.5708)

Table 5.1: Best phase distribution of 4 spheres in rectilinear motion, for di�erent
values of the distance between them. #d is the number of φ scanned within [0, 2π],
everywhere the distance from the wall is d = 1.

#d a = b δ φ
(4,ell)
eff

20 0.5 1.1 (0 , 5.655 , 5.655 , 5.969)
20 0.5 1.3 (0 , 5.655 , 5.655 , 5.969)
20 0.5 2 (0 , 5.655 , 5.655 , 5.655)
20 0.5 5 (0 , 5.969 , 5.969, 5.969)
20 0.5 6 (0, 0, 0, 0)
20 0.5 10 (0, 0, 0, 0)
20 0.5 102 (0, 0, 0, 0)

Table 5.2: Best phase distribution of 4 spheres in elliptical motion, for di�erent
distances between them.
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Thus, no metachronal behaviour is observed. We can argue that the border
e�ects, due to the low number of cilia, are important in such a geometrical con�gu-
ration, clearly di�erent from an in�nite array of cilia.

Unfortunately, the algorithm for a simulation with more than 8 cilia is hugely
expensive in computational terms, and our study can be just, at a present stage,
lead up to this relatively small N . Therefore, we report the distribution for 6 and
8 cilia only after an improvement of the numerical approach, in order to reduce the
border e�ects, explained in the next subsection.

5.3.4 Periodic boundary conditions

A simple extension of our model, which allows us to cancel the border e�ects due to
the �nite number of cilia, can be made imposing the interaction among the cilia to
be a ��rst neiboroughs� interaction with periodic boundary conditions. Each cilium
interacts only with his �rst neiboroughs on the right and on the left, the N -th one
interact with the �rst, and the vice versa. This generalization has both advantages
and disadvantages. Indeed, even if extended for the external cilia, the interaction is
strongly limited for the internal ones.

We performed the calculation for 4, 6 and 8 spheres moving on a segment and on
an ellipse, obtaining:

#d A δ φ
(4,lin)
eff

20 1 2.1 (0, 3.7699, 1.5708, 5.6549)
20 1 10 (0, 1.5708, 1.5708, 0)
20 1 50 (0, 1.5708, 1.5708, 5.9690)
20 1 100 (0, 1.5708, 1.5708, 5.6549)
20 1 200 (0, 1.5708, 1.5708, 5.3407)
20 1 103 (0, 1.5708, 1.5708, 4.7124)
20 1 2 · 103 (0, 4.7124, 4.7124, 1.5708)
20 1 104 (0, 4.7124, 4.7124, 1.5708)
20 1 2 · 104 (0 4.7124 4.7124 1.8850)
20 1 105 (0, 4.7124, 4.7124, 5.3407)

Table 5.3: #d is the number of φ scanned within [0, 2π], everywhere the distance is
d = 1
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#d a = b δ φ
(4,ell)
eff

20 0.5 1.1 (0, 3.142, 3.456, 3.456)
20 0.5 1.5 (0 3.1416 3.4558 3.4558)
20 0.5 1.8 (0 3.1416 3.1416 3.1416)
20 0.5 2 (0, 3.142, 3.142, 2.827)
20 0.5 2.5 (0 3.4558 3.4558 3.4558)
20 0.5 3 (0, 5.341, 5.341, 0)
20 0.5 5 (0, 5.027, 5.027, 5.341)
20 0.5 10 (0, 5.027, 5.027, 5.027)
20 0.5 102 (0, 5.027, 5.027, 5.027)
20 0.5 103 (0, 5.027, 5.027, 5.027)

Table 5.4: #d is the number of φ scanned within [0, 2π], everywhere the distance is
d = 1

φ
(4,lin)
eff ' (0, 4.71, 4.71, 1.57) ∼ (0, 3π/2, 3π/2, π/2) , φ

(4,ell)
eff ' (0, 0, 0, 2.36)

φ
(8,lin)
eff ' (0, 1.05, 1.05, 1.05, 1.05, 5.24)

Therefore, also in this better approximation, no particular patterns are observed.
Altough for the solution with the bigger N , a slight tendence to the monotony seems
to appear. Anyway, this results doesn't con�rm the hypotesis of metachronal e�ective
motion.

5.4 Interaction among cilia near a rigid sphere

Another interesting situation, in which cilia interaction has a propelling function, is
the case of a spheric object moving with the help of attached cilia on its surface. We
start modeling this system as previously done, considering a sphere of radius R with
other smaller spheres moving near its surface.

We start again with the 2-cilia con�guration, whose e�ect on the �uid is repre-
sented here by the motion of two spherical particles of radius a � R, placed at an
e�ective distance d from the surface of the microorganism (see Fig. (5.13)). Let us
call x1 and x2 the position vectors of the two particles in a cartesian reference frame,
with the origin placed in the center of the big sphere.

We restrict ourselves to the case of a far-�eld interaction, justi�ed by the condition
a� d� R. In this approximation, we can consider the e�ects of each particle as a
point-force acting on the �uid instantaneously with velocity v1 and v2, respectively.
In this case the force between the sphere is

F1,2 = 6πµa

(
v1,2 −

GRS(x1,x2) · F2→1

6πµ

)
where GRS(x,X) is a two-order tensor, representing the Green's function (3.3) for
an in�nite �ow that is bounded internally by a solid sphere at rest in the origin with
a stokeslet in X, and is, as known, of the order ∼ 1/R.
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Figure 5.13: 2 cilia elliptical motion near a big rigid sphere.

As before, we want to calculate the force acting on the sphere when the motion
of the two particles is �xed, e.g. we will consider F1,2(x1(t), x2(t)) as unknowns and
v1,2(t) as given data of our problem. More speci�cally, let us restrict to the case
axisymmetric. In spherical coordinates:

x −→ (r, θ, φ) , x = (r cosϕ sin θ, r sinϕ sin θ, r cos θ) , v = ṙer + rθ̇eθ + rϕ̇eϕ

er = (cosϕ sin θ, sinϕ sin θ, cos θ), eϕ = (− sinϕ, cosϕ, 0)

eθ = (cosϕ cos θ, sinϕ cos θ, − sin θ)

We impose the position and the velocity to be of the form:

x1,2(t) = (R + d)er1,2 + θ1,2(t)eθ1,2 + ϕ1,2eϕ1,2 , v1,2 = (R + d) θ̇1,2 eθ1,2

and adimensionalizing using the physical parameters we have:

t′ = ωt , F ′ = F/µa2ω , v′ = v/aω , G′ = aG , d/R = const

where ω is the typical frequency of the cilium's stroke. So, renaming all the variables
x′ → x , the equations become:

F1(t) = 6π[v1(t)−GS(θ1(t), θ2(t), ϕ1, ϕ2) · v2(t)]

F2(t) = 6π[v2(t)−GS(θ2(t), θ1(t), ϕ2, ϕ1) · v1(t)]

and, from 2.8, the total force acting on the big sphere at the time t is equal to

FS(t) = −F1(t)− F2(t)



5.4. INTERACTION AMONG CILIA NEAR A RIGID SPHERE 75

5.4.1 2 cilia: angular motion

We thus consider a modelisation of the cilium's stroke as generalisation of the linear
one near a rigid plane, taking a angular trajectory along eθ, and a periodic motion
with the same frequency and a phase di�erence φ:

θ1(t) = θ1(0) + δθ1 sin(2πt) , θ2(t) = θ2(0) + δθ2 sin(2πt+ φ) (5.3)

Our �rst goal is to �nd the e�ective phase that maximize the average total force
over a period. To prevent superpositions and to preserve the simmetry, we choose
initial conditions such that θ0 = θ1(0) = −θ2(0), δθ ≡ δθ1 = δθ2 , ϕ1 = ϕ2 = 0 and
2|θ2(0)− θ1(0)| > δθ1 + δθ2:

θ1(t) = θ0 + δθ sin(2πt) , θ2(t) = −θ0 + δθ sin(2πt+ φ)

Numerically, we �nd that F̄ = 〈|FS|〉 has the shape in Fig.1 with two peaks for

φ
(2,ang)
eff . This result is in total agreement with the one obtained in the case of two

sphere near a plane, but the force is bigger, due to the geometry of the con�guration.
The best phase is again

φ
(2,ang)
eff = π/2

showing a recurrence of the symmetry in the interactions.

A question with no analogous in the plane geometry case arises, i.e. for which
separation the maximum average force F̄ S

M , corresponding to the most e�cient phase
di�erence, assumes the higher value?

In Fig.1 the initial conditions are a �xed δθ1,2 and di�erent θ1,2(0), in a range
that prevents superpositions. In Fig.2, we see the value of φM , phase di�erence that
maximize the force F̄ for di�erent θ1,2(0) and δθ1,2. In Fig.3 we have F̄ for various
θ1,2(0) and amplitudes.

As expected after the analysis of Section (5.3.1), the system receives a best push
for cilia as close as possible.

Figure 5.14: Average force on the sphere in function of the phase di�erence between
the two cilia. On the left: the plot shows F̄ for 4 di�erent values of θ0, with an
amplitude of δθ ' 0.313. The two peaks occurs for δφ ' π/2 and δφ ' 3π/2. On
the right θ0 ' 0.79 is �xed and the various graphs show four di�erent amplitude
0.20 ≤ δθ ≤ 0.79.
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Figure 5.15: Phase di�erence and Maximal Force vs initial angle, for various ampli-
tudes.

5.4.2 4 cilia: angular and elliptical motion

If we consider a sphere with more than two cilia, we will have, due to the linearity
of the Stokes' equations:



F1(t) = 6π
[
v1(t)−

∑N
i=2 GRS(θ1(t), θi(t)) · vi(t)

]
...

... · · ·
Fj(t) = 6π

[
vj(t)−

∑N
i6=j GRS(θj(t), θi(t)) · vi(t)

]
...

... · · ·
FN(t) = 6π

[
vN(t)−GRS(θN(t), θi(t)) · vi(t))

]
(5.4)

FS(t) = −
N∑
i=1

Fi(t)

If we consider a con�guration where every cilium is performing an oscillatory motion
with frequency ω and amplitude δθ, and preserving the simmetry such that

θ1(t) = θ01+δθ sin(2πt) , θ2(t) = θ02+δθ sin(2πt+φ2) , ... , θN(t) = θ0N+δθ sin(2πt+φN)

every equation of the nonlinear system (5.4) becomes:

Fj(t) = 6π

[
vj(t)−

N∑
i 6=j

GS({θi(0)}1,N , {θi(0)}2,N , δθ) · vi(t)

]
, i = 1, ..., N (5.5)

The code was modi�ed to perform the calculation with N cilia, but the huge time
required still prevents us to extend this method to more than 4 cilia. In the case
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N = 4 we performed numerical calculation to �nd which is the best distribution of
phase di�erences φ. The best result we found shows an increasing phase di�erence:

φ
(4,angl)
eff = (0, 2.51, 3.77, 2π)

In this con�guration we notice an increasing distribution of phase di�erence, but we
don't see any constant di�erence, which would mean the arising of a metachronal
wave.

5.5 In�nite array of cilia

In the previous sections, we considered only a �nite number of interacting ideal
cilia. Another possible extension of the plane geometry problem, studied in Section
(5.3.1), is to consider an in�nite array of sphere as sum of in�nite copies of N cilia.
This system has shown [22] the arising of metachronal waves as result of the phase
dynamics of cilia in interaction.

Fixed a kinematics for N cilia, every one will interact not only with the other
N − 1, but with in�nite copies of them equally spaced (see Fig. 5.16). Therefore,
the force on each sphere will be

Fi(t) = 6π
N∑
i 6=j

[
vi(t)−

∞∑
k=−∞

GW (xi(t),xj(t)− kx0) · vj(t)
]

, x0 = Nδ (5.6)

where δ is the distance between two adjacent cilia, and so x0 the size of the ideal
box of Ncilia. Hence, we have to calculate the sum in (5.6).

Figure 5.16: In�nite array of Spheres: con�guration and variables.
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Figure 5.17: In�nite array of Stokeslet: con�guration.

Recalling the variables with reference to Fig. 5.17:

x̂1 = x− kx0 = x− kxim0 = X̂1 , r = |x− kx0| , R ≡ |X̂| =
√

(x− kx0)2 + h20

GW
11 (x, kx0) =

1

r
+
x̂21
r3
− 1

R
− X̂2

1

R3
− (2h20 − 2h0X̂1)

(
1

R3
+ 3

X̂2
1

R5

)

=
2(R3 + r3)(x− kx0)2 − r3h20

r3R3
− 2h0(x− kx0 − h0)

R2 + 3(x− kx0)2

R5

GW
11 (x, x0) =

∞∑
k=−∞

GW
11 (x, kx0)

In the limit of great distance (h� r) , R→ r = |x− kx0|, thus:

GW
11 (x, kx0) '

4|x− kx0|3(x− kx0)2

|x− kx0|6
− 2h0(x− kx0) · 4(x− kx0)2

|x− kx0|5

=
4(x− kx0)2 − 8h0(x− kx0)

|x− kx0|3
=

4(x− kx0)(x− kx0 − 2h0)

|x− kx0|3

GW
11 (x, x0) '

∞∑
k=−∞

4(x− kx0)(x− kx0 − 2h0)

|x− kx0|3

The velocity �eld corresponding to this Green function is plotted in Fig. 5.18.
Numerically, this sum has been implemented for N = 3, 5, with result:

φ
(3∞,lin)
eff = (0, 4.71, 4.40) , φ

(5∞,lin)
eff = (0, 4.40, 4.71, 4.71, 4.71)
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#disc A δ φ
(3∞,lin)
eff

20 1 2.1 (0, 1.2566, 2.5133)
20 1 10 (0, 4.7124, 4.7124)
20 1 50 (0, 1.5708, 1.5708)
20 1 100 (0, 4.7124, 4.7124)
20 1 200 (0, 4.7124, 4.7124)
20 1 103 (0, 1.5708, 1.5708)
20 1 5 · 103 (0, 4.7124, 4.7124)
20 1 104 (0, 1.5708, 1.5708)
20 1 105 (0, 1.5708, 1.5708)

Table 5.5: #d is the number of φ scanned within [0, 2π], everywhere the distance is
d = 1

Figure 5.18: Sum on k in the Green function for an in�nite array. kmax = 1000: on
the left varying x0, on the right h

5.6 Conclusions

In conclusion, in this work we explored, from a new point of view, the issue of
optimal coordination of moving bodies as a model for cilia anchored on a surface.
Cilia are known to deform as so-called metachronal waves, and the hypothesis in the
literature is that these waves somehow correspond to optimal modes of deformation
of the surface. Assuming this optimality to correspond to a maximum force exerted
on the �uid with given kinematic constraints, we asked in a simpli�ed setting whether
this was actually the case.

We studied the cases of a plane and a spherical surface, with di�erent contraints
on the trajectories of the ideal cilia. De�nitely, from all our work the arising of
metachronal waves does not appear in any of the con�guration considered. This can
be ascribed to di�erent causes:

� First of all, we assumed that cilia deform with given kinematics and maximize
the �push� force, but it could be the case that they maintain a constant force
and vary kinematics, being the �exibility of their bodies a main characteristic
of the motion.
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� Moreover, for the usual con�gurations of cilia near a wall, as for the Parame-
cium or the transport of mucus layers, the number of cilia N � 1, but due to
the numerical limits we encountered we could only put ourselves in the case
N ∼ O(1) .

� The approximation that we used, only made use of the with the long-range
hydrodynamics and the �rst re�ection for the no-slip condition on the moving
spheres. In the case of cilia attached to a plane, we went as far as to maximize
the interaction, realizing an in�nite array of spheres, but even in this case the
interaction was limited to the �rst re�ection.

However, the importance of this work lies in the fact that within the constraints of
the numerics and the limits of our approximations, we answered for the �rst time
the tricky question about the kinematic optimality of the metachronal solution for
cilia arrays.
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